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And the strangeness will all prove to be connected and make sense
- Edward O. Wilson

1 Introduction

Classical mechanics, a renowned branch, deals with the interaction of massive
objects - from apples and balls to ships or even planets. This branch was
enriched with many theories by many people, amongst which Sir Isaac Newton,
PRS, was a pioneer[1]: Newton�s method covered a wide range of applications
to particles. Joseph-Louis Lagrange later o¤ered a very comprehensive treatise
on mechanics, comparable to Newton�s. In his Mécanique Analytique, Lagrange
developed his own method, involving, what is now-called, the Lagrangian[2].
This was later modi�ed by Sir William Rowan Hamilton to cover the description
of a system with an enormous number of particles[3]. The trajectory of any body
could be determined. Even a roulette could exactly predict where the ball might
have landed, given the exact position, momentum and energy of the object. It
seemed as though the apparent world had been daunted - determinism had taken
shape. A mathematical model of gravity on earth that could entail successfully
accurate predictions for the heavenly bodies was mysterious and �lled with
awe, to say the least. Mathematics was �unreasonably e¤ective�[4], to mark the
words of a Hungarian American theoretical physicist and mathematician Eugene
Paul Wigner, FRS, himself. The method �spread the light of mathematics on
a science which up to then had remained in the darkness of conjectures and
hypotheses�[5].
Now that nearly all the macroscopic phenomena could be explained using

the physics passed down by scientists for 200 years upto the nineteenth century,
scientists turned to light. Greek, Arab, Babylonian and Egyptian philosophers
had a wide range of theories for light, amongst which Plato�s theory was most
popular[6]. There were many competing theories of light and all were partially
or completely incorrect. The �rst question that demanded scienti�c attention
was the speed of light. Initially, light was conceived of having a speed that
was not �nite - an uncomfortable idea today. This was conceived from an
experiment by Galileo Galilee. Galileo tried to determine the speed of light by
arranging two observers standing at a distance apart, holding laterns equipped
with shutters, observing each other�s lanterns by signaling each other. He was
unable to measure any signi�cant time lapse of the signals, compared to the
human re�exes[7]: After all, even a quick movement of the head in the mirror
will convince us of the same! Later in time, however, the �niteness of the speed
of light was proposed by Ole Roemer who observed a moon of Jupiter, Io, in
1675[8]. Impressively, his calculations yielded a speed of 2 � 108m=s[8]: There
is evidence that Newton favoured this calculation:

�Light is propagated from luminous bodies in time and spends
about seven or eight minutes of an hour in passing from the Sun to
the Earth. This was observed �rst by Romer, and then by others,
by means of the Eclipses of the Satellites of Jupiter�[9].
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The interaction of matter with matter became clear with Newton�s Prin-
cipia Mathematica. However, the then understanding of the nature of light and
consequently its interaction with matter was not without its di¢ culties. Conse-
quently, Newton turned to the nature of light - a domain that remained disputed,
notwithstanding his presence. There is even evidence that he did not publish
his Opticks during the life of Robert Hooke, FRS, for fear of criticism[10]. It
should be remarked that Hooke was a well-reputed natural philosopher, writer
and polymath. In his Opticks, Newton theorised that light was also composed of
particles, which he called corpuscles of light[9]. This model then adopted fairly
with his theorems in Principia. To Newton, light travelled in extremely straight
lines in any constant medium, because there was no net force to act on it, deep
within that medium. A particle of light could be seen travelling in a projectile in
the form of a parabola - the straightness was due to the fact that in one nanosec-
ond, light travels a distance of 30 cm. The curvature would then naturally be
extremely small to be detectable. The re�ection of light could be paralleled
to a ball bouncing o¤ a surface. Refraction could be explained by considering
di¤erent forces acting on a light corpuscle in a change of a medium. To account
for a prism�s splitting, Newton simply stated that the amount of colour varied
with the mass of a corpuscle and hence was the cause of a di¤erent amount of
�bending� (refraction). To explain polarisation, it was hypothesised that the
corpuscles were not spherical but, in fact, �at, plate-like.
As beautiful as the corpuscular hypothesis may seem, coupled by Newton�s

reputation, this model, however, failed because it could not account for interfer-
ence, di¤raction and birefringence of light. In order to account for interference,
di¤raction and birefringence, a whole new approach to light - a wave theory
- was proposed by René Descartes, the French famous for his philosophy, in
1637[11]. Basing his arguments on what is generally believed[12] to be Wille-
brord Snellius�manuscript of an experiment Snell conducted in 1621, the law of
refraction was published by Descartes[11], thus hailing a wave nature of light.
Furthermore, Hooke in 1665[13] and Robert Boyle, FRS, in 1664[14] both inde-
pendently discovered what is now called �Newton�s rings�. Christiaan Huygens,
FRS, is another �gure who contributed signi�cantly to the wave front theory of
light in1678[15]: Notwithstanding the development of the wave theory of light,
the arguments in its favour were crushed by Sir Isaac Newton majorly because
of his reputation. The particle theory of light remained dominant for over a cen-
tury. However, during this period, the wave theory of light did �nd a support
in Leonard Euler in 1746[16]. Later when the particle theory of light was found
inadequate, the wave front theory of Christiaan Huygens was adopted. This
happened because of Thomas Young in 1801[17][18], who is noted for greatly
challenging the corpuscular hypothesis by his principle of interference. The
treatment of the French engineer Augustin-Jean Fresnel on the wave nature of
light in 1850[19] received the Paris Academy 1818 prize[12]: The wave theory
was also defended rigorously by James Clerk Maxwell, FRS, FRSE, in 1895[20].
In 1888, Heinrich Rudolf Hertz experimentally veri�ed Maxwellian view of light
equations[21] giving a �nal blow to the particle nature of light.
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1.1 From Continuity to Discretisation

Hertz also performed the photoelectric emission experiment, which involved the
scattering of electrons by shining radiation on metals, in 1887[22]. It was here
that the wave theory of light started to receive its doubts since this phenomenon
could not be explained[22]. This is because it was believed that the ejection of an
electron must be dependent on the intensity of the incoming radiation. In 1905,
Albert Einstein proposed a solution to the photoelectric emission, stating that
light was composed of particles[23], for the experiment could not be explained
otherwise. In his own revolutionary words:

�According to the assumption to be contemplated here, when a light
ray is spreading from a point, the energy is not distributed contin-
uously over ever-increasing spaces, but consists of a �nite number
of energy quanta that are localised points in space, move without
dividing and can be absorbed or generated only as a whole.�[23]

This revived the disagreement state of the early days concerning the nature
of light. Was light composed of particles or not? The question of the nature of
light seemed greatly unsettled with equally valid and opposing views.
Let alone the nature of light, the interaction of light with matter was also

with its di¢ culties. This interaction could only be explained if the nature of
light was precisely known. Thus the confusion only multiplied. What is the real
nature of light and how will this contribute to an understanding of the inter-
action of matter with light? This was a question that was on every physicists�
mind. Such interaction was not limited to di¤raction and refraction only but to
many unidenti�ed phenomena as well. It then happened that early in the twen-
tieth century, experiments to observe the behavior of energy, matter and light
involving the microscopic world provided a maze of data coming from various
phenomena which was incompatible with physics. There were ideas that were
very counter-intuitive and posed as profound dilemmas. One such experiment
involved the radiation emitted from a black body. At the turn of the twenti-
eth century, physicists were interested in the energy carried by light. For this,
a black body seemed perfect because of its absorbing properties. The experi-
ment determined an empirical formula for energy from high-frequency radiation
given o¤ from a black body and it seemed incompatible with an equally good
representation of the low-frequency results![24] Furthermore, according to the
then theory and the experimental data, there was a continuous discharge of en-
ergy as the wavelength decreased[25]. This predicted an in�nite energy at very
low wavelengths. The term �ultraviolet catastrophe�was introduced by Paul
Ehrenfest for this singularity[26].
Should matter be then understood thoroughly? Robert Andrews Millikan,

an American experimental physicist and Nobel laureate, performed his famous
oil drop experiment in 1909[27] to determine the magnitude of the elementary
charge. He published the results four years later in 1913[27]. In 1911, Ernest
Rutherford, 1st Baron, Lord Rutherford of Nelson, of Cambridge, OM, FRS, a
New Zealand-born chemist and physicist, proposed the planetary model for the
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Figure 1: Ludwig Boltzmann�s diagram of the I2 molecule proposed in 1898
from Vorlesungen über Gastheorie showing the atomic �sensitive region�(�, �)
of overlap

atom[28]. The famous experiment, which involved bombarding atoms to a gold
foil, could point to only such a possibility. However, this breakthrough came
to a halt only a little later when Rutherford himself realised that this model,
according to Newton�s well-grounded physics, was not stable - each orbiting
electron would instantly fall into the nucleus, radiating energy as it did because
of centripetal force within a fraction of a second. In other words, all of matter
should have collapsed. What was to be done? Physics could not account for an
understanding of light and matter. It seemed as though physics was wreaked
with errors.
Ludwig Edward Boltzmann is a name that strikes as a key but hardly ap-

preciated �gure for solving the troubles[29]. He suggested that the atom world
was not continuous as intuition purported it. The Austrian physicist is known
to have been sent to despair for the opposition he faced against his revolution-
ary ideas in the �elds of statistical mechanics and statistical thermodynamics.
Facing severe opposition for his ideas, it was very likely that he su¤ered from
undiagnosed bipolar disorder[30]. On a vacation in Duino, Trieste, Boltzmann
hanged himself on September 5, 1906[30]. The death is well-documented[31].
In 1900, Max Karl Ernst Ludwig Planck, FRS, with a stroke of genius,

perceived that introducing a quantised oscillation of the atom would correct
the prediction of the experiment for a black-body[25] with his famous equation
E = h�. Ludwig Boltzmann suggested Max Planck to use statistical methods for
the blackbody radiation problem three years before he published his work[29].
Plank was, however, not content with the idea of quantising energy himself[26].
The famous Balmer series of Johann Jakob Balmer, which was introduced

in 1885[32]; and the generalisation of it by Johannes Rydberg, a Swedish physi-
cist, a few years later[33] both assumed a discrete account for atomic spectra.
These considerations and Max Planck�s E = h� proposal in 1900, the plum pud-
ding model of Sir Joseph John Thomson, OM, FRS, proposed in 1904[34], and
Albert Einstein�s 1905 light quanta postulate prompted the Danish physicist
Niels Henrik David Bohr to correct Rutherford�s renowned model by making
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Figure 2: Niels Bohr�s model of the atom proposed in 1913

the bold assumption of a discretely-levelled atom[35], saying, �we must assume
that the ordinary rules of electrodynamics can not be applied ... without radical
alterations�[36]. In a 1918 memoir, he wrote:

I. That an atomic system can, and can only, exist permanently
in a certain series of states corresponding to a discontinuous series of
values for its energy, and that consequently any change of the energy
of the system, including emission and absorption of electromagnetic
radiation, must take place by a complete transition between two
such states. These states will be denoted as the �stationary states�
of the system.
II. That the radiation absorbed or emitted during a transition

between two stationary states is �unifrequentic�and possesses a fre-
quency n given by the relation E��E�= hv where h is Planck�s
constant and where E�and E�are the values of the energy in the
two states under consideration

As for the nature of light, Albert Einstein�s theory was con�rmed by many
experiments over the decade since his 1905 paper[24]. Coined by the American
physical chemist Gilbert Newton Lewis in 1926[37], the word �photon� then
emerged. The question of the nature of light (and matter) was �nally settled
by Louis-Victor-Pierre-Raymond, 7th duc de Broglie, FRS:

"The fundamental idea of [my 1924 thesis] was the following: the
fact that, following Einstein�s introduction of photons in light waves,
one knew that light contains particles which are concentrations of
energy incorporated into the wave, suggests that all particles, like
the electron, must be transported by a wave into which it is in-
corporated... My essential idea was to extend to all particles the

7



coexistence of waves and particles discovered by Einstein in 1905 in
the case of light and photons."[38]

The idea had taken a new shape that shattered the philosophy of atomism.
The de Broglie hypothesis had blurred the distinction between a localised par-
ticle and a continuous wave, and, in a sense, uni�ed the ideas for radiation of
Maxwell and Einstein, stating mathematically that any particle with a momen-
tum p had a wavelength � from p = h=�. Max Planck�s equation equally meant
that a particle with a kinetic energy E had a frequency � to which it was directly
proportional, with h being the constant of proportionality. The hypothesis had
profound implications - an electron in motion now was a wave smeared out in
space. This wave is determined by a wave function which obey�s Schrodinger�s
equation. The magnitude of such a wave at any instant t0 is the probability
of �nding the electron in that position1 . It is worth pointing out that the de
Broglie hypothesis has been experimentally veri�ed numerous times[39]-[46].

1.2 Philosophical Implications

These ideas seemed like simple mathematical tricks. As stated earlier, even Max
Planck himself was reluctant with his new concept. It was evident, however, that
physics started to fail at numerous points in the microscopic world - the so-called
quantum realm, where physical properties change only in discrete amounts, or
quanta, instead of a continuously varying spectra of values. A new theory was
clearly needed to describe the state function of particles that was beyond the
scope of the then physics. The foundations of QuantumMechanics were thus laid
that di¤erentiated old physics, now called classical physics, from physics that
was quantised. The term was coined by Max Planck in 1924[47]. Added to the
di¢ culty of increasingly counter-intuitive ideas was the scope of approximating
quantum mechanics as a limiting case to classical physics. This change may
have radically e¤ected our views of nature but that does not necessarily imply
that classical physics is now super�uous - rather, the limitation and the range
of validity for classical mechanics has been established.
One may observe that all of the problems discussed above were furnished

with a solution, albeit ad hoc, by quantising the subject of investigation. It
was only later that Quantum Mechanics emerged as a successful and rigor-
ous theory for the behaviour of matter and energy on the scale of atoms and
subatomic particles. However, the theory is not restricted to the microscopic
world. Quantum mechanics has since delved into almost every aspect of the
�real�world, providing a rich body of scienti�c principles based on a quantised
view of the world. The theory hailed as a paradigm shift with its tantalising
ideas in science[48]. Such disciplines include quantum chemistry, quantum biol-
ogy, quantum game theory, quantum electronics, quantum computing, quantum
electrodynamics, quantum cryptography, quantum optics, quantum information
science, quantum �eld theory and quantum gravity to name a few. However,
being pragmatic is not enough; Quantum Mechanics is shocking to say the least:

1This will be seen mathematically in the next chapter
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�For those who are not shocked when they �rst come across quantum
theory cannot possibly have understood it�- Niels Bohr

Notwithstanding the intense knot, the departure from what was purported
to be reality was not without its support and, also, antagonism. This is greatly
justi�ed by only one experiment -�the most beautiful experiment�[49] - involving
the determination of the bipolar nature of matter (and hence light). When the
experiment was performed, it was viewed with high suspicion. The experiment
was a modi�ed version of Dr. Thomas Young�s original experiment, which
involved rays of light passing through two slits and producing an interference
pattern on a screen. Years later, when wave properties were understood, after de
Broglie�s hypothesis, electron waves were studied. A modi�ed version of Young�s
double slit experiment, never carried out by Dr. Thomas Young himself[50],
indicated that particles of matter (electrons) interfered with themselves and
that the particles passed through both slits at the same time, even if they were
�red to the slits one at a time[51]! How could a particle interfere with itself?
Is matter wavy in nature or is a wave made up of matter? Where does the
cause-e¤ect relationship go? De Broglie had opened up a whole new domain for
philosophers. This was not all to the experiment - the wave nature of matter
was destroyed by the very act of measuring it and particles then behaved as
particles and nothing more[52]. Matter (and light) were determined to be both
particles and waves; they only chose to be either in di¤erent situations. This
seemed like a cruel joke on the part of nature and was not very comforting. The
nature of reality was on stake - everything one sees and is comforted with was
on shaky foundations with embarrassing holes that, even to child, were seriously
objectionable. It seemed as though the wave function reduction was extremely
subjective, by being at mercy of an observer - reality is created if it is observed!
The wave function had widely di¤ering interpretations. One of the founders

of Quantum Mechanics, Erwin Rudolf Josef Alexander Schrödinger, Austrian
physicist and Nobel prize winner, originally viewed the wavefunction of an elec-
tron corresponding to charge density of an object smeared out over a possibly
in�nite region[53]. Max Born interpreted it as simply corresponding to a prob-
ability distribution with coordinates of space and time. Simply put, the wave
function is a quantum state which fully describes a quantum particle or a system
of quantum particles. The development of such a quantum state showed signs of
challenging credulity in an extremely troubling way. John Stewart Bell is known
to have mocked this situation: �I am a quantum engineer but on Sundays I have
principles.�[54]. To see what it is about quantum mechanics that has troubled
physicists and philosophers alike, one must be equipped with a few technical
words. Embarking on such an overwhelming expedition will then provide great
insight: Realism states that reality is independent of a conscious mind[6]. For
our purpose, objectivity may be considered synonymous with realism. This is
contrasted to subjectivity and idealism. The word �conscious�has been taken
in its broadest, unde�ned sense. Positivism asserts that all meaningful state-
ments are either analytic or conclusively veri�able by direct observation[55].
Determinism is de�ned as a completely ordered idea, in which an event can be
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determined as an e¤ect of its past causes[6].The Principle of Locality, in Einstein
own words, exerts the relative independence of two objects in space, where it is
proposed that an in�uence on one object will leave the other unperturbed[56].
An instrumentalist is a person who believes that a certain idea is true if it has
practical applications[6].
In quantum mechanics, an object exists in a superposition of states. The

probability amplitudes of each state interfere with themselves and each other.
For example, an atom with two levels represented by jexcitedi and jgroundi
will exist in the superposition 1p

2
jexcitedi+ 1p

2
jgroundi i.e. simultaneously. To

mark the idea, Erwin Schrodinger proposed a gedanken in 1935[53] in which he
proposed a cat in a box trapped with an atom that decays after an hour with
50% chance. The decay of the atom releases a poisonous gas, thus killing the
cat. An hour later, the cat exists in a superposition state

1p
2
jaliveicat 
 jstableiatom +

1p
2
jdeadicat 
 jdecayediatom

The cat is both dead and alive!
A measurement of a quantum state in a linear superposition will yield in

only one state. What state will be yielded? This one fundamental question is of
primary importance in quantum mechanics. Quantum Mechanically, each state
is a possible result. The results may not even be the same for identical systems.
This is where quantum mechanics has taken its �ight from determinism. The
outcome is dependent on a probability distribution (the wave function) of such
a system. Even the probability may not be continuous. This irreversible change
caused by measurement is called a wave function collapse. Consider a ball on
the left side of a toy-hill, trying to cross it over. If the initial kinetic energy
provided to the ball is greater than the potential energy needed to climb the
toy-hill, the ball will be on the right side of the hill, no matter how many times
the experiment is repeated. On the other hand, if a quantum particle tries to
pass through a door, the wave function will assign probabilities to the position
of the particle. This means that the particle may be present behind the door,
in front of the door and even in the door. No matter what the initial velocity
of the particle is, it will stay in a superposition of these three states. If an
objective reality of quantum mechanics is considered, the particle present in all
three places and places between them simultaneously.
One simple example of wave function collapse is the measurement performed

in the modi�ed version of Young�s double slit experiment. It can easily be seen
that this idea has opened a large world of theories and possibilities. A plausible
thing to do would be to turn to the de�nition of measurement. To date, there is
no universal consensus on what constitutes a Quantum Measurement[57]. This
is because the measuring device must also obey the rules of quantum mechanics
and must, therefore, be subject to limitations. It is said that the state decoheres
with the environment. This is true in the Copahengen Interpretation of Quan-
tum Mechanics. This interpretation was formulated by Bohr and Werner Karl
Heisenberg in 1927, while they were collaborating in Copahengen[58]. Accord-
ing to them, to ask the state of a system before measurement is meaningless.
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The state only chooses one value after it is measured. Reality is created when
it is measured! This prompted Einstein to remark, �Is the moon there when no-
body looks?�[56] This revived a state of confusion in the days of Bishop George
Berkeley whose esse est percipi (�to be is to be perceived�) proposed that if a
tree falls in a forest and no one is around to hear it, it does not exist.[59]
This interpretation is very close to the objective collapse theory of quantum

mechanics, except that the latter believes in the objective reality of the wave
function. In this theory, a collapse will occur in a indeterministic way i.e.
random way or when a physical threshold is reached. The role of measurement
and a conscious observer are discarded. This last remark opens room for an
important discussion: the role of consciousness. In fact, there is one complete
interpretation based on a wave function collapse caused by a conscious observer.
This was purported by John von Neumann in 1932[60]. He reasoned as follows:
the complete world may be regarded as one wave function. Since something
�outside� the wave function was needed to measure it and cause a collapse,
he concluded that the collapse was due to a conscious observer. This raises
many critical questions. Can a cockroach cause a wave function to collapse? An
earthworm can split into two earthworms; can they have an entangled conscious
or do they independently cause a wave function to collapse? If, on the other
hand, all our conscious was grouped together, were we then the cause of our
own wave function�s collapse? Where does lucid mysticism, to use the words[61]
of the Austrian physicist and one of the founding father of quantum mechanics
Wolfgang Ernst Pauli, di¤er from physics?
In another interpretation, the wave function simply takes one possible value,

asserting that the wave function has an objective reality. This interpretation,
however, denies that a collapse ever happens. Instead, it asserts that the wave
function splits into many possibilities in di¤erent worlds, not observable to each
other. Thus, Schrödinger�s cat branches o¤ in history upon a measurement. The
objective reality of the wave function exerts that the cat is both alive and dead
in the box, existing in a superposition of states. The �alive�and �dead�cats are
in di¤erent branches of the universe, both of which are equally real, but which
cannot interact with each other. Are there in�nite worlds? The answer, the
author believes, lies in the tastes of the reader. Regardless of how unconvincing
the argument may sound, this approach does win determinism back.
Another interpretation of quantum mechanics utilises the concept of the

mathematical probability distribution. It states that the wave function, without
an objective reality, can only be applied to an ensemble of particles and not one
individual object. This is called the ensemble interpretation[62]. The laws of
classical probability then come into play. The wave function can not exist in
more than one states for one object and thus the wave function can never really
be reduced. The very foundation of this interpretation has been the cause of
criticism[63].
Perhaps the closest any interpretation got to determinism was the de Broglie�

Bohm theory, called the pilot wave theory, in 1952[64]. This is a theory because
it involves the radical idea that the wave function actually guides the trajec-
tory of the particles. The wave function is given a speci�c force, called the
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quantum force in the form of hidden variables, which interacts with all other
classical forces. It may seem paradoxical to work with hidden variables. Bohm-
de Broglie worked on a theory that accounted for trajectories in the form of
hidden variables. The wave function then pointed to trajectories a particle
could take. This theory is completely deterministic. It was not well received
because it was seen as a step backward from the, perhaps, liberating ideas of
quantum mechanics[64]:
There is another problem associated with Schrodinger�s cat state. If the atom

has decayed, we know that the cat is dead. If the cat is alive, then we know that
the atom has not decayed. Any state that exists in a superposition, no matter
how large their spatial separation is, the measurement of one state will reveal the
state of the other. This is true if the states are entangled, like Schrodinger�s cat
state. In Schrodinger�s own words, entanglement happens �when two systems,
of which we know the states by their respective representation, enter into a
temporary interaction due to known forces between them and when after a time
of mutual in�uence the systems separate again. They no longer can be described
as before but by endowing each of them with a representative of its own. I
would not call [entanglement] one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of
thought�[65]. In other words, even if two objects are spatially separated by a
distance of light years, information about such an object can travel faster than
light. It su¢ ces to speak of the importance of entanglement through variations
like �spooky action at a distance�[56] and �contagious magic�[66]. Has physics
gone this bizarre? It may be that such imperfections in a theory may be the
result of a �aw in our experiments (indirectly, our measurements) or of our
limited knowledge.
The latter idea was fully developed as a theory of hidden variables in the

famous Einstein-Podolsky-Rosen Paradox in 1935[67], which even went further
to state that Quantum Mechanics was incomplete. It seems as though the man
behind the idea of a photon was now bent on bringing determinism back. The
EPR argument, carrying the belief that �the Old One does not play dice�[68],
imagined a particle decaying into two particles speeding o¤ in di¤erent directions
with exactly the same spin magnitude but di¤erent directions. If the position
of one particle is measured without any way disturbing the other particle, the
position of the other may be determined. Using a similar reasoning, the mo-
mentum of both particles may be determined. In order words, if the principle
of locality were to hold, then there is no way that one could have information
travelling faster than the speed of light. Thus, the idea essentially states that if
two measurements are made of a decaying particle, one measurement for each
by-product, both the position and momentum of the quantum particles may be
determined by using the laws of the conservation of energy. This is in direct
contradiction to the Hiesenberg Uncertainty Principle which says that both the
position and momentum (non-commuting operators) can not be both simulta-
neously determined. Although the assumptions in the EPR Paradox did not
satisfy all of the postulates of quantum mechanics, yet the idea of an incom-
plete theory was still frustrating for proponents of Quantum Mechanics because
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the EPR Paradox did not receive a satisfactory reply. The idea had gained
wide attention; intuition could now rest unchallenged. If the 1935 paper was
wrong, then so was the law of conservation! However, the merry days for real-
ism, determinism and locality were over when John Stewart Bell published his
famous no-go theorem in 1964, called Bell�s inequality, that resolved the EPR
paradox[69].

Theorem 1 No physical realistic and local theory can agree with all of the sta-
tistical implications of Quantum Mechanics[70]

Proof. Let�s say Alice and Bob each posses two particles, whose state they can
measure with two detectors each. The detectors are arranged at random. If
these particles are photons, we could have detectors arranged to detect vertical
and horizontal polarizations. If we have electrons, we could arrange to have a
� spin 1=2 state with a corresponding detector. Since a general treatment is
being considered, this theorem is within the reach of an experimental realisa-
tion. For now, the exact con�guration is not important. What is important is
the assumption that the particles possess two arrangements each which can be
replenished for as long as necessary, that these arrangements have an objective
reality before they are measured and that a measurement will only reveal to the
observer a property of that particle. The moon must exist even if we are not
looking, after all! Each measuring device has a randomly chosen arrangement,
such that the one arrangement does not alter or in�uence the other Thus, if
there are two possible measurements, then one result would occur with a prob-
ability of 1=2. Let�s call the arrangements of the particles Alice has a and c and
those of the particles Bob has as b and d. When a randomly chosen measurement
is made, a value of, say, 1 is assigned to it whereas a corresponding score of �1
is applied if the measurement reveals another arrangement of the particle. The
measurements performed by Alice and Bob must be made at exactly the same
time so that in now way do they in�uence each other. It is further assumed
that in no way does one particle change the other when a measurement is made.
This last sentence combines to give us, what is called, local realism. Then, the
following table lists the possible outcomes:

Particle a Particle c Particle b Particle d
1 1 �1 �1
1 �1 �1 1
�1 1 1 �1
�1 �1 1 1

This table obeys the equality

ab+ cb+ cd� ad = �2

If the number of measurements is gradually increased, we can take the average2

of the measurements. This gives us the CHSH inequality

habi+ hcbi+ hcdi � hadi � 2
2See appendix
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If classical intuition of locality were true, this equality would hold. In quantum
mechanics, this is not the case. Imagine an entangled Bell-state3 j01i�j10ip

2
. Now,

this state is given to Alice and Bob. Alice only performs a measurement on a
and Bob measures b. Suppose the measurement basis change to j0ih0j � j1ih1j
and j1ih1j�j0ih0j�j0ih1j�j1ih0jp

2
for a and c, respectively and j0ih1j + j1ih0j and

j0ih0j�j1ih1j�j0ih1j�j1ih0jp
2

for Bob�s b and d, respectively. These are projection

operators that can act on a certain state vector4 . Then, habi = hbci = hbdi =
�hadi = 1p

2
. These values do not satisfy the CHSH inequality. This simply

means that one of our assumptions is incorrect. The alert reader may now un-
derstand why unnecessarily listing each aspect of our accepted version of reality
was important because this very simple mathematics has revealed otherwise.
Now, what is it that is not in the �avour of Quantum Mechanics; locality, parts
of reality or reality itself?
Quantum Mechanics has killed locality and determinism because it slew

positivism. Why does Quantum Mechanics do that? What actually is it to
the meaning and mystery of quantum mechanics? Perhaps there is no need
to interpret mathematics at all, for, all of the above implications stem from
a realist�s view of mathematical formalism. A realist is a mathematician who
believes that mathematics has a correspondence to external reality. Albert
Einstein was a realist[71]:A Platonist, on the other hand, is a mathematician who
believes that mathematics draws from a higher, unchanging and ultimate reality
called a Platonic heaven - a place where abstract ideas reveal themselves so that
reality may be approximated to them. The Austrian logician, mathematician
and philosopher Kurt Friedrich Gödel, on the other hand, was a Platonist and
also an idealist[72]. This greatly simpli�es many debates since the mathematics
of quantum mechanics derives its ways from a transcendental reality, which
is beyond the scope of humanity to interpret. This may seem like dabbling
away with interpretations. On the other hand, to struggle with these counter-
intuitive notions appears to be a physicists passion - they can not do without an
interpretation. The Copahengen Interpretation has been chosen as the standard
interpretation (with due disagreement, of course). The division of physicists
may be noted for its connection in the long �idealist vs. realist�debate. As a
comment, it maybe added that the collapse of a wave function has also been
argued to be nothing more than a mathematical entity[73]. This argument stems
from a formalist�s view of mathematics. It may also be tempting to take the
instrumentalist�s point of view with quantum mechanics which weighs the truth
of knowledge according to its usefulness. Such an interpretation �nds many
supporters, but to them, the opposition simply states that theories may work
for the wrong reasons. The point of concern of this section, however, was on
the phenomenology and formalism of quantum mechanics - the mathematics

3a state like the Schrodinger cat state represented, for convenience, as 1p
2
j1icat
j0iatom+

1p
2
j0icat 
 j1iatom =

j10i+j01ip
2

. The cat and the atom are not necessarily sole candidates for
this entangled state and may be replaced by any particle.

4See appendix
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and observation. It is on the nature and limitations of knowledge and the
relationship of reality with the being that physicists are divided and thus, a
conclusion is ultimately left to correspond to the taste of the reader to choose
a utopia of ideas over realism.
The length of the thesis only allows partial window to be opened. For a

vista, the curious reader may refer to references [56], [65] - [73], which detail an
account on the ideas and challenges posed by Quantum Mechanics. For now,
the reader should excuse the author for the following quote by Nathaniel David
Mermin: �Shut up and calculate!�[74]

1.3 Technological Advances

Quantum Mechanics has enjoyed extreme precision and success. Being the best
candidate for the small world beyond the naked eye, Quantum Mechanics ex-
plains why, which and how waves emerge from atoms. It is also widely used
by chemists to explain inter-molecular properties and structure[75]. Mathemat-
ically, as will be seen later, the theory is well-grounded. Of the many gifts
classical physics has given society, there is one an important utility viz. ra-
dio communication, revolutionising many aspects of our lives. No body would
doubt that during World War II, radio communication must have been very
crucial. What classical physics does not fully tell us is how these waves interact
with metals. Sir Rudolf Ernst Peierls, CBE, Flex Bloch and Alan Wilson �lled
this gap and developed a band theory of solids using the principles of Quantum
Mechanics. Any engineer familiar with semi-conductor physics based on this
band theory would not deny the impact of this theory in micro-electronics.[76].
Quantum Mechanics is, thus, not just a mathematical curiosity. To make the
point hit home, two latest developments will be discussed viz. the Bose-Einstein
Condensate and the Recurrence Tracking Microscope.
To explain the Bose-Einstein Condensate, it is important to �rst talk about

matter. Matter exists in di¤erent states, dependent on their temperature. Imag-
ine having a state of matter di¤erent from solid, liquid and gas at temperatures
with in a fraction of absolute zero that would cause the particles of matter
to fall or condense beyond anything ordinary. A Bose�Einstein condensate is
such a state of matter. It consists of a dilute gas of weakly interacting force
carrier particles which obey certain statistics. The particles are con�ned in an
external potential so as to isolate them. This has the e¤ect of revealing quan-
tum mechanical properties. The atoms transform into waves, spreading out
in space, even though they are �sitting� in rest, interfering with each other,
losing their individual identity and combining into one complete wave packet
being everywhere at once! This is quantum mechanics at hand with extremely
blended atoms, which form a super-atom. Quantum Mechanical e¤ects can now
be studied on an easier level. This condensed state of matter was predicted
theoretically by Satyendra Nath Bose an Indian mathematician and physicist,
in 1924, who collaborated with Einstein for his theory. Experimental hindrences
took their toll on the quest for absolute zero, until seventy years later, when the
�rst Bose-Einstein Condensate was observed. This achievement was crowned
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with the 2001 Nobel Prize in Physics.
The father and son duo William Lawrence Bragg and William Henry Bragg

proposed what is now called Bragg�s Law in 1913. The equation they proposed
gives the angles of coherent and incoherent waves scattered o¤ crystals. A dif-
fraction pattern is observed and this allows for the structure of crystals to be
probed. The incident rays disturb the electron cloud of the crystal. This shift
of charges causes the atom to radiate the same incident radiation but in a dif-
ferent direction. The energy and hence wavelength of the incoming radiation
is preserved; only a change in direction is recorded. For this to take place, the
wavelength of the incident radiation must be comparable with interatomic dis-
tances. This di¤raction can be completely explained using Maxwell�s equations.
However, any impurities in the atoms are also recorded. Often, the resolution is
not of an acceptable extent. If the atoms are themselves dynamic, the di¤rac-
tion becomes frustratingly di¢ cult. There have been many advances in this �eld
of microscopy. A probe proposed by Dr. Farhan Saif[77] is based on quantum
recurrence phenomenon The phenomenon simply states that a closed quan-
tum system will return to its initial state, hence the word recurrence. In the
microscope proposed, a cloud of cold atoms like the Bose-Einstein Condensate
bounce elastically o¤ a special mirror. This mirror is connected to a cantilever
that records the bounces. The cantilever is in�uenced by the dynamical nature
of the atoms. The recurrence of the atoms bouncing o¤ of the atomic mirror
is easy to calculate if the height of the atoms is known. If the surface under
investigation is dynamic, quantum recurrences are recorded, keeping in mind
both the periodicity of the bouncing atoms and the surface under investigation.
This determines the structure of the surface.
Quantum Mechanics has a rich theory developed in the areas of cryptog-

raphy, superdense coding and teleportation to name a few. Another quantum
theory employed in technology is that of computation. Classical computers,
modelled by a Turing Machine, use a step-by-step sequence to execute algo-
rithms. This is a hindrance in many ways. For example, in many cases, the
best-known search algorithm is a brute search. Quantum Mechanics employs
its power of parallelism to execute many commands in parallel. This yields
an impressive exponential speed-up. One major reason to opt for a quantum
computer is because of Moore�s Law, which states the computation power has
been increasing ever since the invention of a silicon chip because of a growing
demand of computation power. This is contrasted with a decrease in the size
of the chips. This can not go on forever as the size of chips are reduced to the
length of atoms - quantum mechanical e¤ects will dominate. Since quantum
mechanics has an inherent uncertainty, computation will become probabilistic.
This is bad news since this may mean a severe computation crisis and all that
is linked to computers, which is not limited to banks, mobile phones and TVs.
To avoid losing information and computation, quantum computation developed
as an alternative. This computer model based on the principles of Quantum
Mechanics has been well-de�ned with a rich theory. All that remains is for engi-
neers to build a physical quantum computer that will perform all that is limited
on a classical computer.
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The harmonic oscillator quantum computer is the simplest known example
of an implementation of a quantum computer. This technique uses the di¤erent
discrete energy levels of an atom, say. Nuclear Magnetic Resonance, Ion traps
and photon quantum computers are also other well-known techniques. It is
worth mentioning that the Bose-Einstein Condensate has relevance to quantum
computation - instead of using lasers for computation, one could employ the
Bose-Einstein Condensate, which produces equally coherent waves or atomic
lasers. These coherent atoms in �ight are used for computing. The state of
an electron are also employed in quantum computation. Consider an electron�s
transition from one state to another as it exchanges an energy packet in the form
of a photon, if the frequencies match with the incoming radiation. To make this
experimentally feasible, atoms are shot in a cavity, with the detuning between
the cavity and the incoming atoms minimised. This principle is exploited in
engineering quantum algorithms using cavity quantum electrodynamics. This
method thus employs the internal states of an atom for computation, which is
what has been expounded in this thesis.

1.4 Overview of work in thesis

A resonant atom-�eld interaction is not all to the technique employed in en-
gineering a quantum algorithm in this thesis; a modi�ed approach, based on
the theory developed in [78] has also been used. Here, the detuning is made
large enough so that the interaction of the cavity with the atoms is o¤-resonant.
Instead, the atoms receive a kick that is not su¢ cient for a transition but causes
a change in its momentum states, also called external states, of the incoming
atoms. Energy levels represent di¤erent quantum bits, called the internal states.
If the energy levels are not altered during an interaction with any cavity, i.e.
there is no resonance of the atomic energy di¤erences and cavity�s �eld, then
external states of the atom are taken for quantum bits. An algorithm called
the Deutsch Algorithm has been engineered using such techniques. This algo-
rithm completely resolves, in a deterministic way, an unknown Boolean function,
provided that it has a certain properties. In engineering the algorithm using
quantum optics, a series of cavities are positioned to interact with three atoms,
one at a time. Atomic waves are passed through each cavity. The arrangement
is such that the sequence implements the algorithm. It will be seen later in
this thesis that the choice of representation using internal and external states is
not arbitrary. Di¤erent interaction times are selected in each cavity to perform
unitary transformations of the external states. The preparation and measure-
ment of such a state, however, has not been discussed. Previously, the algorithm
has been engineered by Shi-Biao Zheng[79] using the internal states of atoms.
This thesis modi�es this approach to use the external states of atoms by us-
ing techniques of Bragg di¤raction. This technique is in the scope of current
technological standards.
We now turn to cover the mathematical formulations necessary for quantum

mechanics.
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Hilbert space is a big place - Calrton Caves

2 Mathematical Preliminaries

The aim of this section is to make the thesis as self-contained and elaborate as
possible. There are several items of nomenclature and notation which may be
a cause of confusion amongst themselves because of their similarity. In order
to avoid that, details of each de�nition have been explicitly detailed in the
appendix. It may be noted that the something as complex of as a Hilbert space
for doing Quantum Mechanics starts with the simple de�nition of a set and
function. As beautiful as this idea may seem, it may also be added that this
mathematics is not without its di¢ culty. Maxwell�s far-fetched equations are
compatible with only the real number system and a di¤erential operator. On the
other hand, a complex Hilbert space is needed for Quantum Mechanics. Instead
of di¤erential and integral operators, there is a rich array of operators to choose
from. Linear Algebra is fully expounded. There are many di¤erent �elds that
are in play together to make a working system for quantum mechanics.

2.1 Momentum, position and energy operators

Such lengthy and fancy mathematics has been introduced in order to rigor-
ously state the momentum, energy and position of a quantum state. Classically,
momentum and position are dynamical variables. In Quantum Mechanics, dy-
namical variables are replaced by operators of such observables. This complete
operator theory applies naturally to these observables. The proper methodology
of their employment has been discussed in the postulates of quantum mechan-
ics. The position operator r̂ is simply de�ned as r̂ := r: The motivation for this
de�nition becomes clear when one considers r as an averaged position of a sys-
tem. The momentum operator is de�ned as, in spatial coordinates, p̂ = �i~r
where ~ is Planck�s constant and r is the nabla operator. Under a suitable
transformation, the momentum operator is equivalent to the position operator.
This implies that the both operators are equivalent in di¤erent spaces. In one
space, however, the operators still do not commute:
Proof. Let  be any state. Then,

[̂r; p̂] = r̂p̂ � p̂r̂ 
= �r (i~r ( )) + i~r (r ( ))
= i~ rr
= i~ 

Since this holds for any  , it can safely be said that [̂r; p̂] =i~
The energy operator is de�ned as Ê := i~ @@t . Since energy and time have the

same relation in special relativity as momentum and veloctity, therefore .[Ê; t̂] =
i~: The problem with t̂ is in its de�nition; t̂ can not be de�ned as t̂ =t since
its Fourier transform is not possible because there is no �negative time� and,
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consequently, can not correspond to energy. However, QuantumMechanics does
not treat time and position on equal footing as special relativity. In Quantum
Mechanics, time is just a parameter, useful for labelling the wavefunction and
there is no such operator t that would give us a commutativity with H of i~.
Proof. Suppose the contrary and say [H; t̂] = i~
where  is any eigenstate with eigenenergy E.
) e�ict̂Heict̂ = H�c for any c 2 R
Now, if H = E ; then
e�ict̂Heict̂ = (E�c) 
) E has a continous energy spectrum in R
) E is unbounded
In analogy to �p�x � h; we must have �E�t � h but then there is an

inherent di¢ culty in addressing �t: If it corresponds to the interval a state can
exist, then, heuristically, a state that cannot exist in a short span must have
an inde�nite amount of energy, and contrariwise. When events transpire at a
shorter interval, there is a large uncertainty associated with the energy of the
events. Is the entropy principle voilated? Inde�nite energy has to be borrowed
and returned. This is consistent, as long as the total energy of the universe is
not an exactly known parameter at any time. In conclusion, one might suggest
that the energy of a quantum system cannot be determined with one history;
this is in agreement with the spirit of Quantum Mechanics.

2.2 Hamiltonian

Of particular importance are the position and momentum operators because of
their clear fundamental importance even in classical mechanics to determine the
total energy (kinetic and potential) of a system. Classically, the Hamiltonian
of a system is described as the total energy of a system. The determination of
a Hamiltonian following from the principle of least action can be put aside for
now. What matters is that the Hamiltonian carries its classical de�nitions over
as the sum of the kinetic energy T and potential energy V of the system. In
Quantum Mechanics, however, the Hamiltonian is an operator that acts on a
state. By de�nition, the Hamiltonian is assumed to be Hermitian. It di¤ers from
its classical counterpart by being an operator instead of an element of a �eld.
This is because kinetic and potential energy are formed so by using operators
of momentum and energy de�ned on the Hilbert space. L2(�1;1)5 . This is
the state space for Quantum Mechanics.

2.3 Uncertainty Principle

In 1927, Werner Heisenberg stated that for any two non-commuting observ-

ables, Â; B̂, 4A4B � 1
2

���D[Â; B̂]E��� 6 . This mathematical assortment is of great
5See appendix
6See appendix

19



value and is the core reason why quantum mechanics exists. Since the ob-
servables do not commute, the eigenvalues of both the variables can not be
determined simultaneously. In physical language, this means that two non-
commuting observables can not be measured simultaneously. From the above
theorems, 4r4p � ~

2 and 4E4t �
~
2 , Both the variables can not both be de-

termined with a limit less than ~
2 . The more accurately one tries to measure one

observable, the other expands its uncertainty. A simple algebraic manipulation
reveals that if the energy of a system is determined with complete accuracy,
then 4t becomes very large Similarly 4r!1 as 4p! 0. This is where quan-
tum mechanics departs with classical mechanics: the momentum and velocity
of a body can not both be determined with complete accuracy. This departure
marks the core of the theory of quantum mechanics[80].
The notion of uncertainty deserves some elaboration as this entails a lengthy

discussion, as was hinted above. Uncertainty is normally referred to as a lack of
knowledge. To an experimentalist, it has to do with inaccuracy that is garnered
through the execution of the experiment or even in the de�nition of a quantity.
In quantum mechanics, it is normally understood as a statistical spread in an
collection of similarly prepared systems. Being an intrinsic part of quantum
mechanics, uncertainty leads us to question the following: are these restrictions
on the experiments that can be performed? If that is the case, there are in-
herent limitations on the information that can be gathered, which is not very
comfortable for many. Is the relation an inherent limitation of ideas that can
be borrowed from classical mechanics? That would mean a whole new theory
for quantum mechanics is needed. Finally, is this the way quantum mechanics
simply is - indeterministic as the Copahengen interpretation puts it? In fact,
many choose to call the Hiesenberg�s inequality as simply a relation instead of a
principle. This stems from one question: is the aim of physics limited to describe
observable phenomena? Certainly, many physicists themselves even dislike the
idea of multiple universes and parallel dimensions. This leads into a debate of
ontology which is beyond the scope of the thesis. All such questions are left
to the reader to explore. Interested readers are referred to [6] for fundamen-
tals of ontology and to [81] for a rich discussion on the philosophy of quantum
mechanics.

2.4 Postulates of Quantum Mechanics

There are a number of postulates of quantum mechanics that, if found not con-
tradicting experimental results, may be assumed as axioms. They are, thus, the
starting point for all of the mechanism for quantum mechanics. Essentially, they
list the rules for determining a quantum state which normally depend on some
parameter(s). Below are listed four axioms usually taught at undergraduate
level[82]:-

1. The state of a system is described by a complex-valued wave function in
C1(-1;1), normally denoted by  . The fact that it is a function implies
that only one value must correspond to each (r; t).  (r; t) describes the
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state in terms of a probability amplitude i.e. j (r; t)j2 =  (r; t) (r; t) is
the probability density function. Thus,

1Z
�1

j (r; t)j2 dr =
1Z
�1

 (r; t) (r; t)dr = 1

This normalisation condition simply states that the particle has to be
somewhere! It is important to note that the integral remains the same
even if it is multiplied by a complex number of absolute value 1.

2. Every physically measurable, dynamical variable (observable) has a cor-
responding Hermition operator. Such an operator will be of the form
T : H2 �! H1, where H1;H2 are Hilbert spaces. An observable is a
quantity which can be measured. Examples include position, momentum
and energy. The eigenvectors of such a Hermitian operator form a com-
plete basis of the state vector.

3. The possible results of each observable are the eigenvalues of the cor-
responding operator. Normally, the eigenvectors are called eigenstates.
Since observables are Hermitian, the eigenvalues of this observable are
real. It may seem strange to state a measurement postulate in order to
rigorously de�ne how information can be retrieved from a system but in
quantum mechanics, the problem of measurement has far-reaching impli-
cations. A window to such possible implications has already been seen
in the introductory chapter. This postulate is of special interest because
a measurement on a state in a superposition of states will yield di¤erent
results each time it is evaluated! Of interest is also the state of the sys-
tem after a measurement is made. In classical mechanics, a measurement
generally has no e¤ect on a system. In quantum mechanics, measurement
is an interesting phenomenon because the very act of measuring causes an
irreversible change in the system. This is fancifully stated as �destroying
the wave function�.

4. A projection operator P̂i that acts on a state in order to measure an ob-
servable reduces the state to its corresponding eigenvector. A rich theory
of measurement called the projective measurements or sometimes called
the von Neumann measurements, has been developed. The projective mea-
surement approach uses simple projection operators, described in Chapter
2. It may perhaps be no surprise that this postulate accounts for the wave
function reduction. The vector that remains after the action of a pro-
jection operator is then normalised to meet postulate 1. In functional
language notation, the relation

dP (r)

dr
=

 (r; t) (r; t)
1R
�1

 (r0; t) (r0; t)dr0
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calculates the probability of �nding a particle within a small region dr
after the action of an observable7 . In simpler terms, this postulate simply
asks us to consider the following system:-

�j i+ �j�i

where j�j2 + j�j2 = 1. Upon measuring, the system is forced to change to
either �j i or �j�i with probabilities j�j2 and j�j2, respectively. This is
irreversible. Thus, in order to be able to determine the values of � and
�, one measurement does not su¢ ce since one measurement will give way
to a collapsed wave function. The expected result of a measurement is
described by a continuous or discrete probability distribution, depending
on the state that is being measured. A measurement is made with a device
called the ancilla, which is a part of the environment. A quantum system
thus loses its information to its environment. Since probabilities must have
a sum equal to 1, correspondingly, a complete set of orthogonal projection
operators are those for which

P
i

P̂i = I which simply means that at least

one P̂i must come into play during a measurement. For the above system,
we have P̂1 = j ih j and P̂2 = j�ih�j for P̂1 + P2 = I if h j�i = 0

5. The time evolution of a state is determined by the Schrodinger equation.

Ĥ ( (r; t)) = Ê ( (r; t))

Here, Ĥ is the Hamiltonian of the system in consideration whereas Ê is the
energy of the system. This may or may not be an operator. This crucial
postulate is used to determine how the state  (r; t) evolves over time
and space. There are di¤erent methods to determine the state function
if the total energy of the system is known. One such method called the
probability amplitude method has been utilised.

2.5 Pauli Operators

For an atom�s ith energy level, represented by jii8 , a transition from i to the
jth energy level jji is represented by �ij := jjihij[83].

1. [�ji; �kl] = �ik�jl � �lj�ki

2. [��; �+] = ��z

3. [��; �z] = 2��
7A few text books replace this postulate by accounting for the expectation value of a

variable. In this thesis, this is accounted for in the de�nition of the probability density
function in the appendix.

8From here on, the Dirac notation will be used because of its �exibility. See the appendix
for a review of the notation
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Proof. [�ji; �kl]
= jjihijkihlj � jkihljjihij
= jji�ikhlj � jki�ljhij
= �ikjjihlj � �lj jkihij
= �ik�jl � �lj�ki
If the atom has only one excited level jai and one ground level jbi, then,

the raising and lowering operators are de�ned, respectively, �� := jbihaj and
�+ := jaihbj. The Pauli inversion operator is de�ned as �z := �aa � �bb: Thus,
2. can be veri�ed as follows:
[��; �+]
= ���+ � �+�� = �ba�ab � �ab�ba
= jbihajaihbj � jaihbjbihaj
= jbi(1)hbj � jai(1)haj
= jbihbj � jaihaj
= ��z
For 3., [��; �z]
= jbihaj (jaihaj � jbihbj) j � (jaihaj � jbihbj) jbihaj
= jbihajaihaj � jbihajbihbj � jaihajbihaj+ jbihbjbihaj
= jbihaj+ jbihaj = 2��
It is inherently assumed that the basis vectors jbi and jai are orthonormal.

2.6 Entanglement

One striking feature of quantum mechanics is the concept of entanglement with
far reaching consequences. One such consequence has already been observed in
Bell�s theorem. Entanglement simply means that a state shares certain proper-
ties with another, becoming correlated even if they are separated by a distance
of light years. Changing one state will cause a change in another. One neat
application of this is in the technique of superdense coding. For two qubits,
entangled states, called Bell states, are[84]

j�00i =
j00i+ j11ip

2

j�01i =
j01i+ j10ip

2

j�10i =
j00i � j11ip

2

j�11i =
j01i � j10ip

2

Mathematically, two states are entangled if they can not be factorised into
individual components - notwithstanding spatial separation, such states still
act as one, without an individual identity.
Entanglement is not just a mathematical curiosity. The external states of

an atom can be entangled[85] Also, two di¤erent modes of a cavity may get
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entangled[86]. Photon states can also be entangled using the Bragg regime in
cavity QED[87]. Even Bell states may be generated via atom interferometry[88].
For more details, see a complete thesis in [89].
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�What kind of computer are we going to use to simulate physics?
... Can physics be simulated by a universal computer? ... Can
you do it with a new kind of computer - a quantum computer? ...
Can a quantum system be probabilistically simulated by a classical
(probabilistic, I�d assume) universal computer? In other words, a
computer which will give the same probabilities as the quantum
system does. If you take the computer to be the classical kind I�ve
described so far ... and there�re no changes in any laws and there�s
no hocus-pocus, the answer is certainly no!�- Richard Feynman

3 Quantum Computing

Richard P. Feynman asked wondered whether classical computer can simulate
a quantum phenomenon[90]. This was the real starting point for a Quantum
Computer.
The idea was expounded physically by Paul Benio¤[91]. A detailed discus-

sion for a working, physical Quantum Computer will follow in later chapters.
The theory for Quantum Computation was laid down by David Deutsch in
1985[92]. He showed that, in principle, a quantum computer is perfectly capa-
ble of stimulating quantum phenomena. A working Quantum Computer was
dreamed to be a device that computes on non-classical (quantum) theory. It
should take into account (and bene�t) from the counter-intuitive idea of super-
position, entanglement, parallelism in Quantum Mechanics to manipulate data.
There has been a major interest in Quantum Computing because of its advanced
bene�ts in civilian and security purposes by using the principles of Quantum
Mechanics[93][94]. Contrasted with a classical computer, this machine also has
its variant of the Turing model, as developed by David Deutsch. The rigorous
details for the theory of quantum computation are not of concern in this thesis;
what matters for now is that a model and its machinery have been rigorously
de�ned[70] and that this machinery can be seen to be applied directly.

3.1 Fundamentals

The fundamental unit of information and for computation on a Quantum Com-
puter is the quantum bit or qubit for short, deriving its analogy on its coun-
terpart in classical computing[70]. A bit has two possible states, 0 and 1. Cor-
respondingly, qubits have corresponding states of j0i and j1i, called the com-
putational basis, which are orthonormal by de�nition. What gives quantum
computing its power is that a qubit can exist in a superposition �j0i + �j1i
where j�j2+ j�j2 = 1 until it is measured It is clear that if n-bits of information
are needed, we have 2n possible combinations, classically. In a complete analogy,
such possible combinations can be made by (j0i+ j1i)
n with an appropriate
normalisation. Thus, a two qubit system is of the form �00j00i + �10j10i +
�01j01i+ �11j11i for j�00j2 + j�10j2 + j�01j2 + j�11j2 = 1
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Since � and � both vary over a continuous range, this superposition state
can, in principle, contain in�nite amount of information for di¤erent values of
� and � in just one qubit! This is, however, misleading since a measurement
will yield either j0i or j1i with probabilities j�j2 and j�j2, respectively. Thus a
single measurement yields only a single bit of information. In order to determine
the values of � and �, an in�nite number of such states have to be measured.
Of course, this is experimentally not feasible. If only one bit can be measured
at a time, then how is a Quantum Computer powerful? The answer lies in the
fact that manipulations, before a measurement, on qubits can be performed as
though there were more than one quantum bits of information because the state
exists in a superposition. This is called parallelism.
To manipulate information, unitary transformations are carried out. Clas-

sically, this is done in chips. This manipulated data is sent along a board in
wires. Correspondingly, a quantum circuit has wires and elementary quantum
gates. The algorithms that run on a Quantum Computer can be pictorially
represented using this scheme. These wires, however, do not necessarily indi-
cate the movement of a qubit, it also has the �exibility to correspond to the
passage of time is read from left to right. For an example, see the Deutsch-Joza
algorithm described in the next section.
There are a few elementary quantum gates that are universal in a sense that

any one-bit quantum gate can be built from such gates[95]. To look at a few
examples of quantum gates, consider �rst the simple NOT gate. Classically, a
NOT gate changes 0 to 1 and vice versa. The Quantum NOT gate acts similarly
on a single qubit �j0i+ �j1i and changes it to �j0i+ �j1i. This is represented
by the Projection Operator X̂ = j1ih0j + j0ih1j. This is equal to the Pauli
operator �10+�01. A gate, called the Ẑ gate, that acts on a qubit �j0i+�j1i to
yield �j0i � �j1i corresponds to �z with appropriate basis. Another important
gate is the Hadamard Gate Ĥ := j0ih0j+j1ih0j+j1ih0j+j1ih1jp

2
; which has been used

extensively in this thesis. The only restriction on de�ning gates is to have
unitary transformations because they preserve the topology of the vectors and
are invertible. The transformations de�ned above are unitary.
Proof. X̂yX̂ = (j1ih0j+ j0ih1j) (j1ih0j+ j0ih1j)
= j1ih0j1ih0j+ j1ih0j0ih1j+ j0ih1j1ih0j+ j0ih1j0ih1j
= 0 + j1ih1j+ j0ih0j+ 0 = I
ẐyẐ = (j1ih1j+ j0ih0j) (j1ih1j+ j0ih0j)
= j1ih1j1ih1j+ j1ih1j0ih0j+ j0ih0j1ih1j+ j0ih0j0ih0j = I

and ĤyĤ = j0ih0j+j1ih0j+j1ih0j+j1ih1jp
2

j0ih0j+j1ih0j+j1ih0j+j1ih1jp
2

= 1
2

0BB@
j0ih0j0ih0j+ j0ih0j1ih0j+ j0ih0j1ih0j+ j0ih0j1ih1j+
j1ih0j0ih0j+ j1ih0j1ih0j+ j1ih0j1ih0j+ j1ih0j1ih1j+
j1ih0j0ih0j+ j1ih0j1ih0j+ j1ih0j1ih0j+ j1ih0j1ih1j+
j1ih1j0ih0j+ j1ih1j1ih0j+ j1ih1j1ih0j+ j1ih1j1ih1j

1CCA
= 1

2 (2j1ih1j+ 2j0ih0j) = I
For multiple qubits, the tensor product of operators is used. Each tensor acts

on its corresponding vector i.e.
�
P̂1 
 P̂2 
 :::
 P̂n

�
(jji1 
 jji2 
 :::
 jjin) =
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P̂1jji1 
 P̂2jji2 
 :::
 P̂njjin. The mathematics developed for such tensors has
been de�ned in the appendix section.

3.2 Deutsch-Jozsa Algorithm

The Deutsch Jozsa algorithm is a quantum algorithm that demonstrates the
simple and elegant power of a quantum computer. This algorithm proposed
by David Deutsch and Richard Jozsa in 1985[96] sparked interest in Quantum
Computing because it demonstrated its power and elegance. The algorithm that
was initially proposed was not, in fact, deterministic. However, an improvement
by Cleveland in 1998[97] improved the algorithm, which is still referred to as the
Deutsch-Jozsa algorithm in their honour. The algorithm asks us to suppose that
we have an unknown Boolean function. Classically, every value of such an m-
tuple function would need to be evaluated to determine the function completely.
If the function is promised to be either constant or balanced in its output, then,
classically, it would take 2m�1 +1 inputs to determine the function completely.
After applying the algorithm, only one evaluation is needed to determine the
function completely. The algorithm works as follows[84] :-

1. Take an initial state j i = j0i
m 
 j1i

2. Apply the Hadamard operator on the m+ 1 qubits. This transforms the
state j i to H
m+1j i = j 0i

j 0i = Hmj0im 
Hj1i = 1p
2m

0@ X
x2f0;1gm

jxi

1A
 � j0i � j1ip
2

�
which is easy to verify

3. Apply a unitary operator Uf jx; yi = jxi 
 jy � f(x)i on j 0i to get

j 00i = 1p
2m+1

X
x2f0;1gm

jxi 
 j0� f(x)i � 1p
2m+1

X
x2f0;1gm

jxi 
 j1� f(x)i

j 00i = 1p
2m+1

X
x2f0;1gm

jxi 
 jf(x)i � 1p
2m+1

X
x2f0;1gm

jxi 
 j1� f(x)i

If f(x) = 0, then we have the state
1p
2m+1

X
x2f0;1gm

jxi 
 j0i � 1p
2m+1

X
x2f0;1gm

jxi 
 j1i

= 1p
2m

X
x2f0;1gm

jxi 

�
j0i�j1ip

2

�
= 1p

2m

X
x2f0;1gm

(�1)0jxi 

�
j0i�j1ip

2

�
= 1p

2m

X
x2f0;1gm

(�1)f(x)jxi 

�
j0i�j1ip

2

�
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Diagram

3:jpg

Figure 3: A circuit diagram for Deutsch-Jozsa Algorithm

If f(x) = 1, then we have

j 00i = 1p
2m+1

X
x2f0;1gm

jxi 
 j1i � 1p
2m+1

X
x2f0;1gm

jxi 
 j0i

1p
2m

X
x2f0;1gm

jxi 

�
j1i�j0ip

2

�
= 1p

2m

X
x2f0;1gm

(�1)jxi 

�
j0i�j1ip

2

�
= 1p

2m

X
x2f0;1gm

(�1)f(x)jxi 

�
j0i�j1ip

2

�
i.e. in either case we have

j 00i = 1p
2m

X
x2f0;1gm

(�1)f(x)jxi 

�
j0i � j1ip

2

�

4. Apply H
m 
 Ij 00i to get

j finali = 1p
2m

240@ X
x2f0;1gm

(�1)f(x)
1A0@ 1p

2m

X
y2f0;1gm

jyi

1A35
 � j0i�j1ip
2

�

or
1

2m

0@ X
y2f0;1gm

X
x2f0;1gm

(�1)hx;yi+f(x)jyi

1A� j0i � j1ip
2

�

where hx; yi = x1y1 � x2y2 � :::� xmym
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Light shone, and order from disorder sprung - John Milton

4 Quantum Optics

Newton�s corpuscular hypothesis was greatly challenged by the beautiful uni�ca-
tion of electricity with magnetism when J. C. Maxwell introduced the following
famous equations[20]:-
r�H = @D

@t + J

r�E+@B
@t = 0

r:B = 0
r:D = �
where H is the magnetic vector, E is the electric vector, J is the current

density, � the charge density and J =�E, B =�H, D = �E. Here, � and �
denote the permittivity and permeability of the medium, respectively and � is
the speci�c conductivity. � is also called the dielectric constant. From these
empirical observations rose the wave equation9

r2D� 1

c2
@2D

@t2
for D = D(r; t):

A similar equation is derived for the magnetic vector. The solution of these
wave equations10 are

Ex(y; t) =
�
2�2=V "0

�1=2
q(t) sin(kz)

and
Bx(y; t) =

�
2�20"0�

2=V k2
�1=2

_q(t) sin(kz)

. The propagation of such waves through a medium whose permittivity and
permeability varies with space and time may be completely described by such
an equation. However, Maxwell�s equations may also be used to determine the
di¤raction of light by ultrasonic waves[12]: This is possible by using appropriate
boundary conditions with the wave equation. Thus most di¤raction problems
are solvable using such a boundary value problem. This approach su¢ ces for
many classical problems with the di¤racting element conveniently considered as
an induced current. The dipole approximation of a (classical) �eld interacting
with an atom is one example. However, such an approach fails in many cases[83].
The �rst idea would be have a quantised �eld de�ned rigorously, through canon-
ical operators. Historically, this is the route adopted by Hiesenberg himself.

4.1 Field Quantisation

Suppose D = D(r; t) is a �eld inside a cavity resonator of length L will have
the wave number kj = j�=L for j = 1; 2; 3; :::. and �j = jc�=L[83]: This leads
us to consider

Dx(y; t) =
X

Ajqj sin(kjy) (1)

9 see appendix for derivation
10 see appendix for derivation
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for a linearly polarised electric �eld in the cavity with expanded normal mode
amplitudes of the cavity indexed with j. The complementary magnetic �eld is
given by

Hz =
X

Aj
_qj"0
kj

cos(kjy) (2)

The cavity has a volume V = LA where A is the transverse area of the optical
cavity resonator. The axis of propagation is taken as the y-axis. Our purpose is
to discretise this �eld by explicitly expressing independent oscillations. Under
such a consideration, it will do well to the reader to imagine a simple harmonic
oscillator, since originally, the analogy was constructed in this way. The am-
plitude of the �eld is analogous to the amplitude of the vibration of a simple
harmonic oscillator. Classically, the Hamiltonian is given by

H =
1

2

Z
dV ["0E

2
x(y; t) +

1

�0
B2z(y; t)]

A straight forward substitution of the solution of the magnetic and electric wave
equation gives

H =
1

2
(p2 + �2q2)

Correspondingly, (2) and (1) give

H =
1

2

X 
mj�

2
jq
2
j +

p2j
mj

!

where mj is the mass of the oscillator. Quantum Mechanically (here is where
quantisation takes place), this is replaced by operators that satisfy [p̂; q̂] = i~:
One such de�nition takes the form

p̂ = �
�
ây � â
2i

�p
2~m� and q̂ =

�
ây + â

2m�

�p
2~m�

from which we get

âj =
1p

2mj~�j
(mj�j q̂j + ip̂j) and â

y
j =

1p
2mj~�j

(mj�j q̂j � ip̂j)

It can be noted that
h
âj ; â

y
k

i
= �jk,

h
âyk; âj

i
= ��jk. These operators are called

the annihilation and creation operators, respectively and are very important.
The reason for calling them such will become clear in the next section. For
now, it is to be noted that substituting the canonical momentum and position
operator de�nition in the Hamiltonian, we get

H = ~
X

�j

�
âyj âj +

1

2

�
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4.2 Fock States

Let H be a Hilbert space for a single particle and S be a symmetry operator.

De�ne S
�
H
0� = C. Then, F is Fock space if F (H) = 1M

n=0

S (H
n) : An element

a Fock space with a well-de�ned number of particles is known as a Fock state
or number state, named after Vladimir Aleksandrovich Fock.
Suppose there exists a �eld with frequency � having the creation and an-

nihilation operators ây and â, respectively. Let jni be the energy eigenstate
corresponding to the energy eigen value En[83] i.e.

Hjni = ~�
�
âyâ+

1

2

�
jni = Enjni

If we apply the operator â from the left, we obtain

Hâjni = ~�
�
âyâ+

1

2

�
âjni = âEnjni

Since
�
â; ây

�
= âây � âyâ = 1

Hâjni = ~�
�
âây � 1 + 1

2

�
âjni

Hâjni = (En � ~�) âjni
The operation of â on a Fock state reduces its energy by ~�! More rigorously,

H�njn� 1i = (En � ~�)�njn� 1i

) En = En�1 + ~�
For n = 1, we end up with the ground state E0 = E1 � ~�. Furthermore,
Hâj0i = (E0 � ~�) âj0i is not allowed because energies lower than the ground
energy are disallowed. Hence, one must conclude that âj0i = 0: To �nd the
ground energy, we use

Hj0i = ~�
�
âyâ+

1

2

�
j0i = E0j0i

) E0 =
~�
2

From En = En�1 + ~�, we have E1 = E0 + ~� = 3
2~�, E2 = E1 + ~� = 5

2~�.
Continuing this way, En = ( 12 +n)~�. This is the energy of an n-level. Plugging
this value as an eigen energy of the Hamiltonian, we see that

Hjni = ~�
�
âyâ+

1

2

�
jni =

�
1

2
+ n

�
~�jni

= ~�âyâjni+ ~�
2
jni = ~�

2
jni+ ~�njni

) âyâ = n
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From the normalisation condition,

1 = hn� 1jn� 1i = hnjâyâjni
1 = nhnjni = j�nj2

) j�nj =
p
n

Hence âjni =
p
njn� 1i

From this, we can proceed to calculate the eigen value of the Hermitian of â as
follows:

âyâjni =
p
nâyjn� 1i

njni =
p
nâyjn� 1i

)
p
n+ 1âyjni = (n+ 1) jn+ 1i
âyjni =

p
n+ 1jn+ 1i

4.3 Atom-�eld interaction

When light falls on an object, it is either re�ected or refracted. To explain this
behaviour requires an enormous amount of calculations and theory. In order to
build a basic theory, we start o¤ with an atom interacting with a �eld. The
physical realisation of the Deustch-Jozsa algorithm in this thesis will requires an
atom resonant or o¤-resonant with a driving �eld, so this theory is important.

4.3.1 Atom-�eld interaction Hamiltonian

The Hamiltonian of an atom interacting with a �eld is the sum of the energy
of the atom, of the �eld and of the interaction. Classically, this interaction is
represented by a dipole. If the �eld is classical in nature, one considers the
dipole formation as the energy of the atom-�eld interaction. This is the semi-
classical treatment of the problem. For a fully quantum treatment, as is valid
in Bragg Di¤raction, the �eld must be quantised. Quantum Mechanically, the
total energy of the �eld in the cavity is the sum of the energy of each individual
vibration[83]. We have

H = HA +HF +HI

where HA is the Hamiltonian of the atom, HF is the total energy of the ra-
diation �eld and HI that of the atom-�eld interaction. If we approximate the
interaction to a dipole and consider individual vibrations of the atom and �eld,
then HI = �er:E where r is the position vector of the dipole formed between
the atom and the �eld, E is an operator of the radiation �eld itself and e is the
elementary charge. E is considered to be uniform. This is obtained in anal-
ogy from E(r; t) =

P
k

�̂k�kâ
y
ke
i�kt�ik:r +

P
k

�̂k�kâke
�i�kt+ik:r for each mode k:

Here, � is the transition frequency of the atom, �̂k is the polarisation direction,
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âyk and âk are the creation and annihilation operators satisfying
h
âk; â

y
k

i
= 1,

�k =
~�k
2�0V

�0 is the permittivity of free space and V is the volume of the cavity

, As established, HF =
P
k

~�k
�
âykâk +

1
2

�
. Let

P
i

jiihij represent a complete set

of atomic energy eigenstates i.e.
P
i

jiihij = 1. Since HAjii = Eijiithen

HAjiihij = EijiihijX
i

HAjiihij =
X
i

Eijiihij

HA =
X
i

Ei�ii

*In the last line, the atomic transition (Pauli) operator �nm = jnihmj has been
used. Furthermore,

er =
X
i

�iier
X
j

�jj

er =
X
i;j

}ij�ij

where }ij = ehijrjji is the electric-dipole transition matrix element. The oper-
ator E takes the form
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For simplicity�s sake, �̂k; �k 2 R 8k . Our Hamiltonian now takes the form
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The substitution gijk = �

}ij �̂k�k
~ has been made to easen calculations out. Now,

considering our case of a two level atom with an excited state jai and a ground
state jbi,

P
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Furthermore,
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The Hamiltonian takes the form
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Every Hamiltonian for a light interacting with an atom corresponds to such a
Hamiltonian with a few minor changes.

4.3.2 Interaction of a single two-level atom with a single mode �eld

There are various ways to obtain the state for an atom-�eld interaction at any
instant later in time of which the probability amplitude method, the Heisen-
berg operator method, gauge invariance method and the unitary time-evolution
operator method are popular. Only the �rst method will be discussed in the
detail.

Probability amplitude method The interaction of a quantised atom with
a classical �eld can be explained. This is at times called the semi-classical
theory. There are, however, instances where a classical account of the �eld fails
to su¢ ce[83]. This is true, for example, in spontaneous emission in an atomic
system. A simpli�ed variant of the above Hamiltonian is given by

H = ~g
�
�abâe

i�t + �baâ
ye�i�t

�
where � = ! � �: The interaction of an atom in free space can be described
by modes of the universe. As of now, we can consider the simplest case of
a two level atom interacting with a single-mode �eld. There are two parts
of the Hamiltonian H viz. the unperturbed Hamiltonian H0 and a perturbed
Hamiltonian H1. The two levels of the atom jai and jbi are the eigenstates of
the Hamiltonian H. The eigenvalues of each state are ~!a and ~!b respectively,
where ~ is Planck�s constant. For a �eld having n photons, the wave function
of the two level atom can be written as

j (t)i =
X
n

Ca;n(t)ja; ni+ Cb;n(t)jb; ni

Using Schrodinger�s equation, we get a coupled set of di¤erential equations

_Ca;n = �ig
p
n+ 1ei�tCb;n+1

and
_Cb;n+1 = �ig

p
n+ 1e�i�tCa;n
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which can be solved with the help of the Laplace transform to get, for 
2n =
�2 + 4g2 (n+ 1)
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The state vector and the evolution of the atom interacting with the �eld is
completely determined for any t.

4.4 Bragg Di¤raction

In their original paper[78], Arbab Ali Khan and M. Sohail Zubairy developed a
method for measuring Quantum non-demolition of a Fock state. The technique
involves passing atomic waves in a �eld cavity and then reading out their dif-
fractions to determine the state of the cavity. In the scheme, single two-level
atoms with well-de�ned momentum states pass through an optical cavity. The
di¤raction is caused by a kick given by the �eld to the longitudinal component
of the momentum. This kick could have been a complete transition of an atomic
state with a release of a photon back in the cavity but the detuning � between
the atomic transition frequency ! and the frequency of the cavity � is made suf-
�ciently large to avoid such a complete transition. The transverse momentum
is treated classically. Upon entering the cavity, the atom may also undergo an
even integral of oscillations called Rabi cycles by taking an integer multiple of
the momentum of a photon ~k, where k is the wave number of the cavity �eld.
The state of the atom remains the same when it exits from the cavity. The
magnitude of the momentum does not change - only its direction does. The
Fock number of the cavity remains the same, too. A crucial point to consider
is that there is no information of the cavity in the atom�s external states. It
is treated combined with the probability amplitudes of the momentum states.
There is no need to consider a summation over the number of photons of the
cavity since, experimentally, only one atom is �red in the cavity at one time.
Thus, the state vector for such an interaction is

e�i
P0
2m~ t

1X
l=�1

Ca;n�1Pl
(t)ja; n� 1i+ Cb;nPl (t)jb; ni

where P0 is the initial momentum of the atom,the states jai and jbi are the
excited and ground states of the atom injected in the cavity, jni is the Fock
state of the cavity In the expression, the state of the atom is shortly represented
as the tensor product for the states of the atom and the photon. After l inter-
actions, the momentum of the atom becomes Pl = P0+ l~k. The exponential is
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introduced for simplicity�s sake. The Hamiltonian for Bragg�s regime is

H =
P 2x
2M1

+
~�1
2
�z + ~g1 cos (kx1)

�
�+â+ ��â

y�
where Px is the momentum of atom 1 along the x-axis after leaving the cavity,
M1is the mass of atom 1, �1 is the detuning as a di¤erence of the frequency !ab
(between level jai, the excited state, and jbi, the ground state, if we assume that
the atom has two states, only) and the frequency ! of the �eld in the cavity. If
the initial momentum P0 of atom 1 is l02 ~kx1 , then Px = (l+

l0
2 )~kx1 where l is

the order of di¤raction and lo is the initial di¤raction order. The operators �+ =
jaihbj and �� = jbihaj are the atomic spin operators for raising and lowering,
respectively. â and âyare the creation and annihilation operators, respectively.
�z = jaihaj�jbihbj is the Pauli inversion operator. Using Schrodinger�s equation,
we end up with some coupled di¤erential equations that can be solved exactly.
At the end of the paper, this technique has been proposed to be applied to

manipulate quantum information. A¢ rmatively, this approach has proved fruit-
ful in the area of quantum computing via quantum optics as many researchers
use this technique to engineer Quantum algorithms. Also, entangled atoms have
been produced with the help of Bragg di¤raction[98]
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Machines take me by surprise with great frequency - Alan Turing

5 Physical Realisation of a Quantum Computer

As mentioned in the introductory paragraph, a physical, working, quantum
computing device is inevitable. Such a machine has to be realised in nature.
Before embarking on such a mission, it is important to outline what requirements
a physical quantum computer must satisfy. Qubits must be input, processed and
give an output. To account for the processing of a quantum computer, one must
�rst prioritise qubits to have a robust representation of quantum information in
the form of qubits. This choice is important because their quantum computation
is all about manipulating qubits. The manipulations performed on the qubits
must cover a family of unitary transformations to account for quantum gates.
This is done by a controlled Hamiltonian evolving the state. If individual qubits
must be transformed, there must exist an equivalent physical way of doing so.
Which important unitary transformations should be realised is a question that
is of little concern to us in this thesis; all that matters is that unitary gates
must have a physical realisation! The states must be prepared easily and may be
measurable. After all, a calculator that can take no numbers and give no answer
must be immediately disposed of! The qubits must be easily reproduced for as
long as necessary. To be able to measure a qubit, one may think of measurement
as a conversion from the quantum world to the classical with a corresponding
representation. This is �collapsing the wave function� and where projective
measurements come into play. The di¢ culties associated with measurements
depend on what sort of system is used.
This raises a question: can they stay isolated from the environment, so that

the they do not decohere, or lose themselves to their surrounding by allow-
ing quantum noise to step in, corrupting a desired manipulation? They must
not, however, be completely isolated; they must stay accessible so they can be
created, manipulated and measured with ease. These considerations are of fun-
damental importance and are the basic requirements for a physical realisation of
a quantum computer. Quantum Mechanical e¤ects are most prominent and easy
to study in spins, charges and polarisations. A spinning coin may have been a
good candidate, provided that it stay spinning for a long period. Besides, there
are no interference e¤ects that can be taken up. A nuclear spin stands as an
antagonist to a spinning coin and is employed in an NMR quantum computer
but has a drawback when it comes to measurements because their coupling to
an external magnetic �eld is very small. Also, the energy di¤erence between
their spin energy and other sources of energy, say kinetic energy is very small,
making it di¢ cult to observe spin energy, let alone manipulate them. However,
charged atoms may be trapped in a magnetic �eld and cooled to reduce their
kinetic energy, revealing their spin energies and give exquisite control. Then,
these ions are used as bits and their selective transitions by monochromatic
light. This is the essence of the ion trap quantum computer. Apart from us-
ing atoms, photons stand as good candidates for a quantum computer because

37



photons do not interact easily with each other and most matter. They can be
guided along optical �bres without any change in their polarisation. They can
be manipulated easily using phaseshifters and beamsplitters. Microwave cavities
and optical cavities are strong candidates for an optical quantum computer.
The following table lists a few candidates for a physical realisation of a

quantum computer to give some perspective of a wide range of possibilities[70]

System Td To �
Nuclear Spin 10�2 � 108 10�3 � 10�6 105 � 1014
Electron Spin 10�3 10�7 104

Ion Trap 10�1 10�14 1013

Microwave cavity 100 10�4 104

Optical Cavity 10�5 10�14 109

where Td is the decoherence time, Td is the operation time and � is maximum
number of operations. The decoherence time is important because one must
know how long a system can remain in its quantum superposition state. The
maximum number of operations has been de�ned as decoherence time divided
by operation time.

5.1 Quantum Computing via Quantum Optics

A branch of Quantum Optics known as Cavity Qauntum Electrodynamics (QED)
studies the interaction of single atoms to a few optical, monochromatic modes
in a cavity to reduce any quantum noise. The single atoms are also kept isolated
to keep them from decohering. The state of each photon in the cavity can, in
principle, be transferred to and from single atoms. By applying phase shift,
phase gates can be engineered[99][100]. Unitary transformations are applied by
controlled interaction timings. Depending on the cavity, di¤erent Hamiltonians
may be applied. For our purpose, it su¢ ces to consider only a two-levelled atom.
Quantum Information can be represented by photon states and the states of the
atom or both, simultaneously. Di¤erent interaction pictures can be used to ac-
count for such a model of computation. This includes the Jaynes-Cummings
model, Rayliegh di¤raction and Bragg�s di¤raction. The last model has been
used for a physical realisation of a quantum computer. The mathematics for
this model has been explained in detail in the previous section.
We now turn to the main concern of the thesis.
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6 Engineering Deutsch Jozsa Algorithm using
techniques of Cavity Quantum Electrodynam-
ics

An atom which can be labelled as atom is �red into the �rst cavity, which can
be called cavity 1. There are only two states of atom 1 viz. jai, the excited
state and jbi, the ground state. Cavity 1 initially has a photon state of jni,
where n 2 N. The atom is far detuned from the cavity hence the interaction
of atom 1 with cavity 1 is not resonant. A second atom, atom 2, has to be
passed through a di¤erent cavity in the same con�guration as cavity 1 i.e. non-
resonantly. A di¤erent cavity is needed because the selection of the interaction
time is di¤erent to correspond to the Deutsch-Jozsa algorithm. After the atoms
leave their respective cavities, a superposition of atomic internal states results.
A third cavity, cavity 3, is placed right the �rst two cavities. Here, the

detuning is again made large enough so that the atoms have a non-resonant
interaction. This is our Uf . For this, we consider di¤erent case of the initial
con�guration of the atom. If the cavity is initially in a state of j0i�j1ip

2
, where n =

0; 1 are photon numbers, a di¤erent result is obtained whereas for a con�guration
of just j0i or j1i gives a di¤erent answer. There is a problem, however. Initially, if
the cavity is in a superposition state, the atom and the cavity �eld get entangled.
To �free�the atoms from the cavity, a third resonant atom initially in its ground
state is passed through this cavity. This atom is then passed through a Ramsey
�eld to release the information of the atoms it has carried with it. This engineers
the desired unitary transformation Uf . It must be noted that cavity 3 has to be
arranged in a manner similar to an arrangement of f . Finally, the third atom is
passed again through a cavity, cavity 4, with the same con�guration as cavity
1. The atoms are then measured. For a generalisation, m such atoms will have
to be passed through cavity 1, cavity 3 and cavity 4.

6.1 Step 1

We start with the �rst cavity. An atom, atom 1, is �red in cavity 1. Cavity 1
and atom 1, set-up to use only external degrees of the atom as quantum bits
for computation, lead us to consider the o¤-resonant Hamiltonian.

H =
P 2x
2M1

+
~�1
2
�z + ~g1 cos(kx1)(�+â+ ��ây)

The cavity initially has a photon state of jni. Thus we can suppose a generalised
state of

j	c1a1(t)i = e�i
P20
2M1

t=~
1X

l=�1

h
Ca;n�1Pl;a1;c1

(t)ja; n� 1; Pli+ Cb;nPl;a1;c1(t)jb; n; Pli
i
(3)

Using the probability amplitude method, we have

@

@t
j	c1a1(t)i =

�i
~
Hj	c1a1(t)i
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Figure 4: Scheme for implementing the Deutsch-Jozsa Algorithm
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It has already been established that âyjni =
p
n+ 1jn + 1i, âjni =

p
njn � 1i,

hbjai = hajbi = 0; hajai = 1; hbjbi = 1; eikxjPli = jPl+1i and e�ikxjPli = jPl�1i.
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Now,
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jaihbjâj	c1a1(t)i =

jaihbjâe�i
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(t)jbihajâyja; n� 1; Pli+

e�i
P20
2M1

t=~
1X

l=�1
Cb;nPl;a1;c1(t)jbihajâ
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Using Eq. (5), Eq. (6), Eq. (7), Eq. (8), Eq. (9) and Eq. (10) in Eq. (4) we
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�
Cb;nPl+1;a1;c1(t)ja; n� 1; Pl+1i+ C

a;n�1
Pl+1;a1;c1

(t)jb; n; Pl+1i
�
+

�i
~
~g1
2

p
ne�i

P20
2M1

t=~
1X

l=�1

�
Ca;n�1Pl�1;a1;c1

(t)jb; n; Pl�1i+ Cb;nPl�1;a1;c1(t)ja; n� 1; Pl�1i
�

e�i
P201
2M1

t=~ 6= 0, therefore

�i P 20
2M1~

1X
l=�1

�
Ca;n�1Pl;a1;c1

(t)ja; n� 1; Pli+ Cb;nPl;a1;c1(t)jb; n; Pli
�
+

1X
l=�1

�
_Ca;n�1Pl;a1;c1

(t)ja; n� 1; Pli+ _Cb;nPl;a1;c1(t)jb; n; Pli
�
=

�i
~

P 2x
2M1

1X
l=�1

�
Ca;n�1Pl;a1;c1

(t)ja; n� 1; Pli+ Cb;nPl;a1;c1(t)jb; n; Pli
�
+

�i
~
~�1
2

1X
l=�1

�
Ca;nPl;a1;c1(t)ja; n� 1; Pli � C

b;n
Pl;a1;c1

(t)jb; n; Pli
�
+

� i
~
~g1
2

p
n

1X
l=�1

�
Cb;nPl+1;a1;c1(t)ja; n� 1; Pl+1i+ C

a;n�1
Pl+1;a1;c1

(t)jb; n; Pl+1i
�

� i
~
~g1
2

p
n

1X
l=�1

�
Ca;n�1Pl�1;a1;c1

(t)jb; n; Pl�1i+ Cb;nPl�1;a1;c1(t)ja; n� 1; Pl�1i
�
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1X
l=�1

_Ca;n�1Pl;a1;c1
(t)ja; n� 1; Pli+

1X
l=�1

_Cb;nPl;a1;c1(t)jb; n; Pli =

�i
~

1X
l=�1

�
P 2x
2M1

� P 20
2M1

+
~�1
2

�
Ca;n�1Pl;a1;c1

(t)ja; n� 1; Pli+

�i
~

1X
l=�1

�
P 2x
2M1

� P 20
2M1

� ~�1
2

�
Cb;nPl;a1;c1(t)jb; n; Pli

+
�i
~
~g1
2

p
n

1X
l=�1

Cb;nPl+1;a1;c1(t)ja; n� 1; Pl+1i+

�i
~
~g1
2

p
n

1X
l=�1

Ca;n�1Pl+1;a1;c1
(t)jb; n; Pl+1i �

i

~
~g1
2

p
n

1X
l=�1

Ca;n�1Pl�1;a1;c1
(t)jb; n; Pl�1i+

� i
~
~g1
2

p
n

1X
l=�1

Cb;nPl�1;a1;c1(t)ja; n� 1; Pl�1i

P 20 =
l2o
4 ~

2k2x1 , P
2
x =

�
l + lo

2

�2 ~2k2x1 , then
i

1X
l=�1

_Ca;n�1Pl;a1;c1
(t)ja; n� 1; Pli+ i

1X
l=�1

_Cb;nPl;a1;c1(t)jb; n; Pli =

1X
l=�1

�
l(l + l0)~k2x1

2M1
+
�1
2

�
Ca;n�1Pl;a1;c1

(t)ja; n� 1; Pli

+
1X

l=�1

�
l(l + l0)~k2x1

2M1
� �1

2

�
Cb;nPl;a1;c1(t)jb; n; Pli

+
g1
p
n

2

1X
l=�1

Cb;nPl+1;a1;c1(t)ja; n� 1; Pl+1i+
g1
p
n

2

1X
l=�1

Ca;n�1Pl+1;a1;c1
(t)jb; n; Pl+1i+

g1
p
n

2

1X
l=�1

Ca;n�1Pl�1;a1;c1
(t)jb; n; Pl�1i+

g1
p
n

2

1X
l=�1

Cb;nPl�1;a1;c1(t)ja; n� 1; Pl�1i

Adjusting the summation, taking projection over the available bases and con-
sidering the accumulative nature of momentum, we end up with

i _Ca;n�1Pl;a1;c1
(t) =

�
l(l + l0)~k2x1

M1
+
�1
2

�
Ca;n�1Pl;a1;c1

(t) +

g1
p
n

2

h
Cb;nPl+1;a1;c1(t) + C

b;n
Pl�1;a1;c1

(t)
i

(11)

and i _Cb;nPl;a1;c1(t) =

�
l(l + l0)~k2x1

2M1
� �1

2

�
Cb;nPl;a1;c1(t) +

g1
p
n

2

h
Ca;n�1Pl�1;a1;c1

(t) + Ca;n�1Pl+1;a1;c1
(t)
i

(12)
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In the Bragg regime, the recoil energy
l(l+l0)~k2x1

2M1
much greater than the energy

associated with the Rabi frequency g
p
n
2 . The slow varying amplitudes will thus

dominate the solution to these coupled equations. If we want to separate the
slow and the fast moving terms, we need to make the substitution

Ca;n�1Pl;a1;c1
(t) = ei�1t=2Aa;n�1Pl;a1;c1

(t)

Cb;nPl;a1;c1(t) = ei�1t=2Ab;nPl;a1;c1(t)

Then, Eqs. (11) and (12) take the form

i _Aa;n�1Pl;a1;c1
(t) =

�
l(l + l0)~k2x1

2M1
+�1

�
Aa;n�1Pl;a1;c1

(t) +
g1
p
n

2

h
Ab;nPl+1;a1;c1(t) +A

b;n
Pl�1;a1;c1

(t)
i

i _Ab;npl;a1;c1(t) =

�
l(l + l0)~k2x1

2M1

�
Ab;nPl;a1;c1(t) +

g1
p
n

2

h
Aa;n�1Pl�1;a1;c1

(t) +Aa;n�1Pl+1;a1;c1
(t)
i

In the adiabatic approximation, the recoil energy
l(l+l0)~k2x1

2M1
is far less than the

detuning �1, therefore
l(l+l0)~k2x1

2M1
+�1 � �1. Then

i _Aa;n�1Pl;a1;c1
(t) = �1A

a;n�1
Pl;a1;c1

(t) +
g1
p
n

2

�
Ab;nPl+1;a1;c1(t) +A

b;n
Pl�1;a1;c1

(t)
�

i _Ab;nPl;a1;c1(t) =

�
l(l + l0)~k2x1

2M1

�
Ab;nPl;a1;c1(t) +

g1
p
n

2

�
Aa;n�1Pl�1;a1;c1

(t) +Aa;n�1Pl+1;a1;c1
(t)
�

The �rst equation is valid for odd values of l whereas the second equation
holds for even values of l: This is because even values of l physically signify a
complete cycle from excitation to de-excitation. E¤ectively, l varies from �3 to
1[?]. This means that Ab;nP2;a1;c1(t) = Ab;nP�4;a1;c1(t) = 0 8 t. Furthermore, the
law of conservation of energy implies that jPinj

2

2M1
= jPoutj2

2M1

=) (l+ lo
2 )

2~2k2x1
2M1

=
( lo2 )

2~2k2x1
2M1

=) l(l + lo) = 0
=) l = 0 or l = �lo
For a �rst order Bragg di¤raction, l0 = 2. Thus the wave function reduces

to
j	c1a1(t)i = Cb;nP�2;a1;c1(t)jb; n; P�2i+ C

b;n
P0;a1;c1

(t)jb; n; P0i

This also means that _Aa;n�1P1;a1;c1
(t) = _Aa;n�1P�3;a1;c1

(t) = _Aa;n�1P�1;a1;c1
(t) = 0 8 t. Then,

we end up with

For l = 1

2i _Aa;n�1P1;a1;c1
(t) = 2�1A

a;n�1
P1;a1;c1

(t) + g1
p
nAb;nP2;a1;c1(t) + g1

p
nAb;nP0;a1;c1(t)

�1A
a;n�1
P1;a1;c1

(t) = �g1
p
n

2
Ab;nP0;a1;c1(t) (13)
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For l = �3
2i _Aa;n�1P�3;a1;c1

(t) = �1A
a;n�1
P�3;a1;c1

(t) + g1
p
nAb;nP�4;a1;c1(t) + g1

p
nAb;nP�2;a1;c1(t)

�1A
a;n�1
P�3;a1;c1

(t) = �g1
p
n

2
Ab;nP�2;a1;c1(t) (14)

For l = �1
2i _Aa;n�1P�1;a1;c1

(t) = 2�1A
a;n�1
P�1;a1;c1

(t) + g1
p
nAb;nP0;a1;c1(t) + g1

p
nAb;nP�2;a1;c1(t)

�1A
a;n�1
P�1;a1;c1

(t) = �g1
p
n

2

h
Ab;nP0;a1;c1(t) +A

b;n
P�2;a1;c1

(t)
i

(15)

For l = 0

_Ab;nP0;a1;c1(t) = �ig1
p
n

2

h
Aa;n�1P�1;a1;c1

(t) +Aa;n�1P1;a1;c1
(t)
i

(16)

For l = �2
_Ab;nP�2;a1;c1(t) = �ig1

p
n

2

h
Aa;n�1P�1;a1;c1

(t) +Aa;n�1P�3;a1;c1
(t)
i

(17)

Substituting Eq. (13) and Eq. (15) in Eq. (16), we get

_Ab;nP0;a1;c1(t) =
�ig1

p
n

2

�
�g1

p
n

2�1
Ab;nP0;a1;c1(t)�

g1
p
n

2�1

�
Ab;nP�2;a1;c1(t) +A

b;n
P0;a1;c1

(t)
��

which simpli�es to

�i _Ab;nP0;a1;c1(t) =
g21n

2�1
Ab;nP0;a1;c1(t) +

g21n

4�1
Ab;nP�2;a1;c1(t) (18)

Substituting Eq. (14) and Eq. (15) in Eq. (17), we get

_Ab;nP�2;a1;c1(t) =
�ig1

p
n

2

�
g1
p
n

2�1

�
Ab;nP0;a1;c1(t) +A

b;n
P�2;a1;c1

(t)
�
� g1

p
n

2�1
Ab;nP�2;a1;c1(t)

�
which simpli�es to

�i _Ab;nP�2;a1;c1(t) =
g21n

2�1
Ab;nP�2;a1;c1(t) +

g21n

4�1
Ab;nP0;a1;c1(t) (19)

These two coupled equations can be solved as follows: Let L[Ab;nP�2;a1;c1(t)] =
F b;nP�2;a1;c1(s) and L[A

b;n
P0;a1;c1

(t)] = F b;nP0;a1;c1(s) where L denotes the Laplace
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transform. Then, L[ _Ab;nP0;a1;c1(t)] = sF b;nP0;a1;c1(s)�A
b;n
P0;a1;c1

(0) and L[ _Ab;nP�2;a1;c1(t)] =
sF b;nP�2;a1;c1(s)�A

b;n
P�2;a1;c1

(0): Eq. (18) takes the form

�isF b;nP0;a1;c1(s) + iA
b;n
P0;a1;c1

(0) =
g21n

2�1
F b;nP0;a1;c1(s) +

g21n

4�1
F b;nP�2;a1;c1(s)

which can be expressed as

F b;nP0;a1;c1(s) =

g21n
4�1

F b;nP�2;a1;c1(s)� iA
b;n
P0;a1;c1

(0)

�is� g21n
2�1

(20)

Eq. (19) takes the form

�isF b;nP�2;a1;c1(s) + iA
b;n
P�2;a1;c1

(0) =
g21n

2�1
F b;nP�2;a1;c1(s) +

g21n

4�1
F b;nP0;a1;c1(s)�

�is� g21n

2�1

�
F b;nP�2;a1;c1(s) =

g21n

4�1
F b;nP0;a1;c1(s)� iA

b;n
P�2;a1;c1

(0)

From Eq. (20), this is�
�is� g21n

2�1

�
F b;nP�2;a1;c1(s) =

g21n

4�1

g21n
4�1

F b;nP�2;a1;c1(s)� iA
b;n
P0;a1;c1

(0)

�is� g21n
2�1

�iAb;nP�2;a1;c1(0)

�
�is� g21n

2�1

�
F b;nP�2;a1;c1(s) =

�
g21n
4�1

�2
F b;nP�2;a1;c1(s)

�is� g21n
2�1

+i
g21n

4�1

Ab;nP0;a1;c1(0)

is+
g21n
2�1

�iAb;nP�2;a1;c1(0)

�is� g21n

2�1
�

�
g21n
4�1

�2
�is� g21n

2�1

F b;nP�2;a1;c1(s) = i
g21n

4�1

Ab;nP0;a1;c1(0)

is+
g21n
2�1

� iAb;nP�2;a1;c1(0)

(is)
2
+
�
g21n
2�1

�2
+ 2i

g21sn
2�1

�
�
g21n
4�1

�2
�is� g21n

2�1

F b;nP�2;a1;c1(s) =

�
i
g21n

4�1

�
Ab;nP0;a1;c1(0)

is+
g21n
2�1

�iAb;nP�2;a1;c1(0)

�
is+

g21n
2�1

�2
�
�
g21n
4�1

�2
�is� g21n

2�1

F b;nP�2;a1;c1(s) =

�
i
g21n

4�1

�
Ab;nP0;a1;c1(0)

is+
g21n
2�1

� iAb;nP�2;a1;c1(0)

i2

264
�
s� i g

2
1n
2�1

�2
+
�
g21n
4�1

�2
�is� g21n

2�1

375F b;nP�2;a1;c1(s) = �i g21n4�1
�
Ab;nP0;a1;c1(0)

is+
g21n
2�1

�iAb;nP�2;a1;c1(0)

F b;nP�2;a1;c1(s) =

0B@ is+
g21n
2�1�

�s+ i g
2
1n
2�1

�2
+
�
g21n
4�1

�2
1CA
24�i g21n

4�1

�
Ab;nP0;a1;c1(0)

is+
g21n
2�1

� iAb;nP�2;a1;c1(0)

35
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F b;nP�2;a1;c1(s) = i

�
g21n
4�1

�
�
�s+ i g

2
1n
2�1

�2
+
�
g21n
4�1

�2Ab;nP0;a1;c1(0)
�i

is+
g21n
2�1�

�s+ i g
2
1n
2�1

�2
+
�
g21n
4�1

�2Ab;nP�2;a1;c1(0)

F b;nP�2;a1;c1(s) = i

�
g21n
4�1

�
�
�s+ i g

2
1n
2�1

�2
+
�
g21n
4�1

�2Ab;nP0;a1;c1(0)
+

s� i g
2
1n
2�1�

�s+ i g
2
1n
2�1

�2
+
�
g21n
4�1

�2Ab;nP�2;a1;c1(0)

F b;nP�2;a1;c1(s) = i

�
g21n
4�1

�
�
s� i g

2
1n
2�1

�2
+
�
g21n
4�1

�2Ab;nP0;a1;c1(0)
+

s� i g
2
1n
2�1�

s� i g
2
1n
2�1

�2
+
�
g21n
4�1

�2Ab;nP�2;a1;c1(0)
From L [e�atSin(bt)] = b

(s+a)2+b2
and L [e�atCos(bt)] = s+a

(s+a)2+b2 or, equiva-

lently, e�atSin(bt) = L�1
h

b
(s+a)2+b2

i
and e�atCos(bt) = L�1

h
s+a

(s+a)2+b2

i
L�1

h
F b;nP�2;a1;c1(s)

i
=

L�1

264i
�
g21n
4�1

�
�
s� i g

2
1n
2�1

�2
+
�
g21n
4�1

�2Ab;nP0;a1;c1(0)
375+ L�1

264 s� i g
2
1n
2�1�

s� i g
2
1n
2�1

�2
+
�
g21n
4�1

�2Ab;nP�2;a1;c1(0)
375

) Ab;nP�2;a1;c1(t) = ei
g21n

2�1
t

�
Ab;nP�2;a1;c1(0) cos

�
g21n

4�1
t

�
+ iAb;nP0;a1;c1(0) sin

�
g21n

4�1
t

��
From Eq. (19)

�i _Ab;nP�2;a1;c1(t) =
g21n

2�1
Ab;nP�2;a1;c1(t) +

g21n

4�1
Ab;nP0;a1;c1(t)

�i g
2
1n

4�1
ei

g21n

2�1
t

�
iAb;nP0;a1;c1(0) cos

�
g21n

4�1
t

�
�Ab;nP�2;a1;c1(0) sin

�
g21n

4�1
t

��
=

g21n

2�1
ei

g21n

2�1
t

�
Ab;nP�2;a1;c1(0) cos

�
g21n

4�1
t

�
+ iAb;nP0;a1;c1(0) sin

�
g21n

4�1
t

��
+
g21n

4�1
Ab;nP0;a1;c1(t)
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This simpli�es to

Ab;nP0;a1;c1(t) = ei
g21n

2�1
t

�
Ab;nP0;a1;c1(0) cos

�
g21n

4�1
t

�
+ iAb;nP�2;a1;c1(0) sin

�
g21n

4�1
t

��
Using the reverse substitutions from Cb;nP�2;a1;c1(t) = ei�1t=2Ab;nP�2;a1;c1(t) and

Cb;nP0;a1;c1(t) = ei�1t=2Ab;nP0;a1;c1(t), we obtain

Cb;nP�2;a1;c1(t) = Cb;nP�2;a1;c1(0) cos

�
g21n

4�1
t

�
+ iCb;nP0;a1;c1(0) sin

�
g21n

4�1
t

�
Cb;nP0;a1;c1(t) = Cb;nP0;a1;c1(0) cos

�
g21n

4�1
t

�
+ iCb;nP�2;a1;c1(0) sin

�
g21n

4�1
t

�
with the phase factors ignored. This is not illegitimate because the modulus
of each such exponential is 1. The above solutions represent sinusoidally vary-
ing probabilities. The period of these probabilities depends on the number of
photons present in the cavity. The state

j	c1a1(t)i = Cb;nP�2;a1;c1(t)jb; n; P�2i+ C
b;n
P0;a1;c1

(t)jb; n; P0i

has been calculated. Initially, the atom has a momentum state of jP0i:Then,
Cb;nP0;a1;c1(0) = 1 and Cb;nP�2;a1;c1(0) = 0 For interaction time t = 4�1

g21n
�=4, the

atom that emerges from cavity 1 is in the state

j	c1a1(t)i =
jb; n; P0i+ ijb; n; P�2ip

2

j	c1a1(t)i = jb; ni 

�
jP0i+ ijP�2ip

2

�
It can be noted that the atom and the cavity are not entangled. This can be
shortly written as

j	a1(t)i =
jP0i+ ijP�2ip

2

This is the Hadamard transform of the bit j0i. m such atoms will have to be
passed through this cavity with the same interaction time to achieve correspon-
dence with the Deutsch-Jozsa algorithm. Now, a similar 2nd atom is passed
through cavity 2. It is again assumed that cavity 2 has a Fock state of jni.
That is, we have the state function

j	c2a2(t)i = e�i
P202
2M2

t=~
1X

l=�1

�
Ca;n�1Pl;a2;c2

(t)ja; n� 1; Pli+ Cb;nPl;a2;c2(t)jb; n; Pli
�

with Hamiltonian

H =
P 2x2
2M2

+
~�2
2
�z + ~g2Cos (kx2)

�
�+â+ ��â

y�
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Going through the familiar series of steps, we end up with

j	c2a2(t)i = Cb;nP�2;a2;c2(t)jb; n; P�2i+ C
b;n
P0;a2;c2

(t)jb; n; P0i
where

Cb;nP�2;a2;c2(t) = e
i

�
�2
2 +

g22n

2�2

�
t
�
Cb;nP�2;a2;c2(0) cos

�
g22n

4�2
t

�
+ iCb;nP0;a2;c2(0) sin

�
g22n

4�2
t

��
Cb;nP0;a2;c2(t) = e

i

�
�2
2 +

g22n

2�2

�
t
�
Cb;nP0;a2;c2(0) cos

�
g22n

4�2
t

�
+ iCb;nP�2;a2;c2(0) sin

�
g22n

4�2
t

��
If, initially, atom 2 has a momentum state of jP�2i, then, Cb;nP0;a1;c1(0) = 0 and
Cb;nP�2;a1;c1(0) = 1: For an interaction time t =

4�2

g22n
3�=4, the atom that emerges

from cavity 1 is in the state

j	a2(t)i =
ijP0i � jP�2ip

2
Except for the unit imaginary, we have achieved an analogy with the Deutsch-
Algorithm.

6.2 Step 2

A third cavity is setup similar to cavity 1 and 2. This step will correspond to
the unitary transformation Uf . Since the outcome of the unitary transformation
is dependent on the values of the function, four di¤erent cases will have to be
treated. This line of reasoning will become clear as the calculations proceed.
In the �rst two cases, the cavity is in the superposition of j0i�j1ip

2
. In the third

and fourth case, the cavity is in the Fock state j1i and j0i, respectively. First,
two atoms, on after the other, are made to interact o¤-resonantly in cavity 3.
The interaction time for the �rst atom is g21

4�1
t = �=2 and g22

4�2
t = �=2 for the

second atom. The atoms and the cavity are entangled for the �rst two cases.
Next, another atom is passed through the same cavity. This time, the detuning
of the atom is made as small as possible to have a resonant interaction. For
an interaction time g3t = �=2, the cavity is switched o¤. This atom will then
lose its information by being passed through a Ramsey �eld and then taking
projection over the ground state. This results in the disentangling of the two
atoms. The second atom has a common phase. There is a di¤erence in the
phase of atom 1, as required.

6.2.1 Case I

We send these two atoms to cavity 3, one after the other. If, initially, cavity 3
is in the superposition state j1i+j0ip

2
and atom 1 is, as before, in its ground state,

the state for atom 1 in cavity 3 j	c3a1(t)i will be of the form

e�i
P202
2M2

t=~
1X

l=�1

�
Ca;0Pl;a1;c3(t)ja; 0; Pli+ C

b;1
Pl;a1;c3

(t)jb; 1; Pli+ Cb;0Pl;a1;c3(t)jb; 0; Pli
�
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For a cavity set up in likeness of cavity 1 and 2, we use the same Hamiltonian
as before. Following a similar series of steps, we get the following equations:

i _Ca;0Pl;a1;c3(t) =

�
l(l + l0)~k2x1

2M1
+
�1
2

�
Ca;0Pl;a1;c3(t)+

g1
2

�
Cb;1Pl+1;a1;c3(t) + C

b;1
Pl�1;a1;c3

(t)
�

(21)

i _Cb;1Pl;a1;c3(t) =

�
l(l + l0)~k2x1

2M1
� �1

2

�
Cb;1Pl;a1;c3(t)+

g1
2

�
Ca;0Pl+1;a1;c3(t) + C

a;0
Pl�1;a1;c3

(t)
�

(22)

i _Cb;0Pl;a1;c3(t) =

�
l(l + l0)~k2x1

2M1
� �1

2

�
Cb;0Pl;a1;c3(t) (23)

i _Ca;0Pl;a1;c3(t) =

�
l(l + l0)~k2x1

2M1
+
�1
2

�
Ca;0Pl;a1;c3(t) (24)

From Eq. (23) can be solved to yield

=) Cb;0Pl;a1;c3(t) = Cb;0Pl;a1;c3(0)e
�i
�
l(l+l0)~k

2
x1

2M1
��1

2

�
t

This equation is valid for even values of l 2 f�1; 0; 1; 2; 3g, i.e. for l = 0;�l0 =
�2. For a �rst order Bragg di¤raction, l0 = 2. Thus, for such values, Cb;0Pl;a1;c3(t)
is constant. These values for l are obtained from the law of conservation of
energy by using the same reasoning that was done previously. Similarly, from
24

i _Ca;0Pl;a1;c3(t) =

�
l(l + l0)~k2x1

2M1
+
�1
2

�
Ca;0Pl;a1;c3(t)

=) Ca;0Pl;a1;c3(t) = Ca;0Pl;a1;c3(0)e
�i
�
l(l+l0)~k

2
x1

2M1
+
�1
2

�
t

Equations (21) and (22) are coupled. Again, we separate the fast and slow
moving terms by the substitution

Ca;0Pl;a1;c3(t) = ei�1t=2Aa;0Pl;a1;c3(t)

and
Cb;1Pl;a1;c3(t) = ei�1t=2Ab;1Pl;a1;c3(t)

and get the same coupled equations as before, for n = 1. The solution to these
coupled equations is thus the same as above for n = 1: Then, the state of the
atom after exiting the cavity is

j	c3a1(t)i = Cb;1P0;a1;c3(t)jb; 1; P0i+ C
b;1
P�2;a1;c3

(t)jb; 1; P�2i+ Cb;0P0;a1;c3(t)jb; 0; P0i+

Cb;0P�2;a1;c3(t)jb; 0; P�2i+ C
a;1
P�2;a1;c3

(t)ja; 1; P�2i+ Ca;1P0;a1;c3(t)ja; 1; P0i
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where

Cb;1P0;a1;c3(t) = Cb;1P0;a1;c3(0) cos

�
g21
4�1

t

�
+ iCb;1P�2;a1;c3(0) sin

�
g21
4�1

t

�

Cb;1P�2;a1;c3(t) = Cb;1P�2;a1;c3(0) cos

�
g21
4�1

t

�
+ iCb;1P0;a1;c3(0) sin

�
g21
4�1

t

�
Cb;0P0;a1;c3(t) = Cb;0P0;a1;c3(0)

Cb;0P�2;a1;c3(t) = Cb;0P�2;a1;c3(0)

Ca;0P0;a1;c3(t) = Ca;0P0;a1;c3(0)

Ca;1P0;a1;c3(t) = Ca;1P0;a1;c3(0)

The phase factors have been ignored for simplicity�s sake. It can be noted that�
j1i+j0ip

2

�


�
jP0i+ijP�2ip

2

�
= 1

2 (j1; P0i+ j0; P0i+ ij1; P�2i+ ij0; P�2i) implies
that Cb;1P�2;a1;c3(0) = Cb;0P�2;a1;c3 = i=2 whereas Cb;0P0;a1;c3(0) = Cb;1P0;a1;c3(0) = 1=2

where j1i+j0ip
2

is the initial state of the cavity and jP0i+ijP�2ip
2

is the initial state

of the atom. Furthermore, Ca;1P0;a1;c3(0) = Ca;1P�2;a1;c3(0) = 0: Then, the state of
the atom after emerging from the cavity takes the form, For an interaction time
g21
4�1

t = �=2

j	c3a1(t)i =
1

2
[j0; P0i � j1; P0i+ ij0; P�2i+ ij1; P�2i]

This state can not be simpli�ed. Thus, cavity 3 and the external states of the
atom are entangled. Now, atom 2 is passed through the same cavity, cavity 3.
Again, we use an o¤-resonant interaction. The mathematics is again achieved
by the same Hamiltonian acting on the state
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j	c3a1;a2(t)i = e�i
P202
2M2

t=~
1X

l=�1
C
a;0;P

(1)
0

P
(2)
l ;a1;a2;c3

(t)ja; 0; P (1)0 ; P
(2)
l i+

e�i
P202
2M2

t=~
1X

l=�1
C
b;1;P

(1)
0

P
(2)
l ;a1;a2;c3

(t)jb; 1; P (1)0 ; P
(2)
l i+

e�i
P202
2M2

t=~
1X

l=�1
C
b;0;P

(1)
0

P
(2)
l ;a1;a2;c3

(t)jb; 0; P (1)0 ; P
(2)
l i+

e�i
P202
2M2

t=~
1X

l=�1
C
a;0;P

(1)
�2

P
(2)
l ;a1;a2;c3

(t)ja; 0; P (1)�2 ; P
(2)
l i+

e�i
P202
2M2

t=~
1X

l=�1
C
b;1;P

(1)
�2

P
(2)
l ;a1;a2;c3

(t)jb; 1; P (1)�2 ; P
(2)
l i+

e�i
P202
2M2

t=~
1X

l=�1
C
b;0;P

(1)
�2

P
(2)
l ;a1;a2;c3

(t)jb; 0; P (1)�2 ; P
(2)
l i

whereP (1)j is the momentum state of the �rst atom for j = 0;�2 and P (2)l is
the momentum state of the second atom for doubly in�nite values of l. By the
probability amplitude method, we get the following equations

i _C
a;0;P

(1)
j

P
(2)
l ;a1;a2;c3

(t) =

 
l (l + l0) ~k2x1

2M1
+
�2
2

!
C
a;0;P

(1)
j

P
(2)
l ;a1;a2;c3

(t) +

g2
2

�
C
b;1;P

(1)
j

P
(2)
l�1;a2;c2

(t) + C
b;1;P

(1)
j

P
(2)
l+1;a1;a2;c3

(t)

�
(25)

i _C
b;1;P

(1)
j

P
(2)
l ;a1;a2;c3

(t) =

 
l (l + l0) ~k2x1

2M1
� �2

2

!
C
b;1;P

(1)
j

P
(2)
l ;a1;a2;c3

(t) +

g2
2

�
C
a;0;P

(1)
j

P
(2)
l+1;a1;a2;c3

(t) + C
a;0;P

(1)
j

P
(2)
l�1;a1;a2;c2

(t)

�
(26)

i _C
b;0;P

(1)
j

P
(2)
l ;a1;a2;c3

(t) =

 
l (l + l0) ~k2x1

2M1
� �2

2

!
C
b;0;P

(1)
j

P
(2)
l ;a1;a2;c3

(t) (27)
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After ignoring the phase factors, we get

j	c3a1;a2(t)i = C
b;1;P

(1)
0

P
(2)
0 ;a1;a2;c3

(0) cos

�
g22
4�2

t

�
jb; 1; P (1)0 ; P

(2)
0 i+

iC
b;1;P

(1)
0

P
(2)
�2 ;a1;a2;c3

(0) sin

�
g22
4�2

t

�
jb; 1; P (1)0 ; P

(2)
0 i+

C
b;1;P

(1)
�2

P
(2)
0 ;a1;a2;c3

(0) cos

�
g22
4�2

t

�
jb; 1; P (1)�2 ; P

(2)
0 i+

iC
b;1;P

(1)
�2

P
(2)
�2 ;a1;a2;c3

(0) sin

�
g22
4�2

t

�
jb; 1; P (1)�2 ; P

(2)
0 i

+C
b;1;P

(1)
0

P
(2)
�2 ;a1;a2;c3

(0) cos

�
g22
4�2

t

�
jb; 1; P (1)0 ; P

(2)
�2 i+

iC
b;1;P

(1)
0

P
(2)
0 ;a1;a2;c3

(0) sin

�
g22
4�2

t

�
jb; 1; P (1)0 ; P

(2)
�2 i

+C
b;1;P

(1)
�2

P
(2)
�2 ;a1;a2;c3

(0) cos

�
g22
4�2

t

�
jb; 1; P (1)�2 ; P

(2)
�2 i+

iC
b;1;P

(1)
�2

P
(2)
0 ;a1;a2;c3

(0) sin

�
g22
4�2

t

�
jb; 1; P (1)�2 ; P

(2)
�2 i+

C
b;0;P

(1)
0

P
(2)
�2 ;a1;a2;c3

(0)jb; 0; P (1)0 ; P
(2)
�2 i+ C

b;0;P
(1)
0

P
(2)
0 ;a1;a2;c3

(0)jb; 0; P (1)0 ; P
(2)
0 i+

C
b;0;P

(1)
�2

P
(2)
�2 ;a1;a2;c3

(0)jb; 0; P (1)�2 ; P
(2)
�2 i+ C

b;0;P
(1)
�2

P
(2)
0 ;a1;a2;c3

(0)jb; 0; P (1)�2 ; P
(2)
0 i+

We get our initial conditions from 1
2 [j0; P0i � j1; P0i+ ij0; P�2i+ ij1; P�2i] 
�

ijP (2)
0 i�jP (2)

�2 ip
2

�
: For an interaction time g22

4�2
t = �=2, the state j	a1;a2(t)i of

the atom after emerging from the cavity is

1

2
p
2

"
ij1; P (1)0 ; P

(2)
0 i+ j1; P (1)�2 ; P

(2)
0 i+ j1; P (1)0 ; P

(2)
�2 i � ij1; P

(1)
�2 ; P

(2)
�2 i+

ij0; P (1)0 ; P
(2)
0 i � j0; P (1)�2 ; P

(2)
0 i � j0; P (1)0 ; P

(2)
�2 i � ij0; P

(1)
�2 ; P

(2)
�2 i

#

This interaction time is the same for both the atoms �red in cavity 3 if �2 = �1
and if g2 = g1. The two atoms are entangled with the cavity. To �free� the
atoms from the cavity, a third atom with two states jai, the excited state and
jbi, the ground state, is passed through the same cavity. This time, the detuning
�3 is not made large enough so as to utilise the internal states of atom 3. The
on-resonant Hamiltonian for atom 3 is

H =~g3
�
�+â+ ��â

y�
If we assume that atom 3 has only two states viz. jai, the excited state, and
jbi, the ground state, then the state of the atom before entering the cavity can
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be taken to be

j	c3a1;a2;a3(t)i =

C
b;1;P

(1)
0 ;P

(2)
0

a1;a2;c3 (t)jb; 1; P (1)0 ; P
(2)
0 i+ Cb;1;P

(1)
0 ;P

(2)
�2

a1;a2;c3 (t)jb; 1; P (1)0 ; P
(2)
�2 i+

C
b;0;P

(1)
0 ;P

(2)
0

a1;a2;c3 (t)jb; 0; P (1)0 ; P
(2)
0 i+ Cb;0;P

(1)
0 ;P

(2)
�2

a1;a2;c3 (t)jb; 0; P (1)0 ; P
(2)
�2 i+

C
b;1;P

(1)
�2 ;P

(2)
0

a1;a2;c3 (t)jb; 1; P (1)�2 ; P
(2)
0 i+ Cb;1;P

(1)
�2 ;P

(2)
�2

a1;a2;c3 (t)jb; 1; P (1)�2 ; P
(2)
�2 i+

C
b;0;P

(1)
�2 ;P

(2)
0

a1;a2;c3 (t)jb; 0; P (1)�2 ; P
(2)
0 i+ Cb;0;P

(1)
�2 ;P

(2)
�2

a1;a2;c3 (t)jb; 0; P (1)�2 ; P
(2)
�2 i+

C
a;0;P

(1)
0 ;P

(2)
�2

a1;a2;c3 (t)ja; 0; P (1)0 ; P
(2)
�2 i+ C

a;0;P
(1)
0 ;P

(2)
0

a1;a2;c3 (t)ja; 0; P (1)0 ; P
(2)
0 i+

C
a;0;P

(1)
�2 ;P

(2)
0

a1;a2;c3 (t)ja; 0; P (1)�2 ; P
(2)
0 i+ Ca;0;P

(1)
�2 ;P

(2)
�2

a1;a2;c3 (t)ja; 0; P (1)�2 ; P
(2)
�2 i

For the time being, the state can be compressed into

j	c3a1;a2;a3(t)i = Cb;1a1;a2;c3(t)jb; 1i+ C
b;0
a1;a2;c3(t)jb; 0i+ C

a;0
a1;a2;c3(t)ja; 0i

By the probability amplitude method,

@

@t
j	(t)i = �i

~
Hj	(t)i

@

@t
Cb;1a1;a2;c3(t)jb; 1i+

@

@t
Cb;0a1;a2;c3(t)jb; 0i+

@

@t
Ca;0a1;a2;c3(t)ja; 0i+

� i
~
~g3

�
�+â+ ��â

y� j	c3a1;a2;a3(t)i
_Cb;1a1;a2;c3(t)jb; 1i+ _Cb;0a1;a2;c3(t)jb; 0i+ _Ca;0a1;a2;c3(t)ja; 0i =

�ig3
�
jaihbjâ+ jbihajây

�
j	c3a1;a2;a3(t)i

_Cb;1a1;a2;c3(t)jb; 1i+ _Cb;0a1;a2;c3(t)jb; 0i+ _Ca;0a1;a2;c3(t)ja; 0i =

�ig3
�
Cb;1a1;a2;c3(t)ja; 0i+ C

a;0
a1;a2;c3(t)jb; 1i

�
This gives us the following rate equations

i _Cb;1a1;a2;c3(t) = g3C
a;0
a1;a2;c3(t) (28)

i _Ca;0a1;a2;c3(t) = g3C
b;1
a1;a2;c3 (29)

i _Cb;0a1;a2;c3(t) = 0

The last equation yields Cb;0a1;a2;c3(t) = Cb;0a1;a2;c3(0). Applying the Laplace trans-
form on the remaining two, we get

isF b;1a1;a2;c3(s)� iC
b;1
a1;a2;c3(0) = g3F

a;0
a1;a2;c3(s) (30)

and
isF a;0a1;a2;c3(s)� iC

a;0
a1;a2;c3(0) = g3F

b;1
a1;a2;c3(s)
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=) F a;0a1;a2;c3(s) =
1

is

h
iCa;0a1;a2;c3(0) + g3F

b;1
a1;a2;c3(t)

i
(31)

Using (31) in (30),

isF b;1a1;a2;c3(s)� iC
b;1
a1;a2;c3(0) =

g3
is

h
iCa;0a1;a2;c3(0) + g3F

b;1
a1;a2;c3(t)

i
�s2F b;1a1;a2;c3(s) + sC

b;1
a1;a2;c3(0) = ig3C

a;0
a1;a2;c3(0) + g

2
3F

b;1
a1;a2;c3(t)

s2F b;1a1;a2;c3(s)� sC
b;1
a1;a2;c3(0) = �ig3C

a;0
a1;a2;c3(0)� g

2
3F

b;1
a1;a2;c3(t)�

s2 + g23
�
F b;1a1;a2;c3(s) = sCb;1a1;a2;c3(0)� ig3C

a;0
a1;a2;c3(0)

F b;1a1;a2;c3(s) =
s

s2 + g23
Cb;1a1;a2;c3(0)� i

g3
s2 + g23

Ca;0a1;a2;c3(0)

Since L [e�at sin(bt)] = b
(s+a)2+b2

and L [e�at cos(bt)] = a
(s+a)2+b2 , )

L�1
h
F b;1a1;a2;c3(s)

i
= L�1

�
s

s2 + g23

�
Cb;1a1;a2;c3(0)� L

�1
�

g3
s2 + g23

�
Ca;0a1;a2;c3(0)

) Cb;1a1;a2;a3;c3(t) = Cb;1a1;a2;a3;c3(0) cos(g3t)� iC
a;0
a1;a2;a3;c3(0) sin(g3t)

Substituting this into Eq. (28), we obtain

i _Cb;1a1;a2;c3(t) = g3C
a;0
a1;a2;c3(t)

�ig3
�
Cb;1a1;a2;a3;c3(0)Sin(g3t) + iC

a;0
a1;a2;a3;c3(0)Cos(g3t)

�
= g3C

a;0
a1;a2;c3(t)

Ca;0a1;a2;c3(t) = Ca;0a1;a2;a3;c3(0) cos(g3t)� iC
b;1
a1;a2;a3;c3(0) sin(g3t)

The state vector

j	c3a1;a2;a3(t)i =

C
a;0;P

(1)
0 ;P

(2)
0

a1;a2;a3;c3 (t)ja; 0; P (1)0 ; P
(2)
0 i+ Cb;0;P

(1)
0 ;P

(2)
0

a1;a2;a3;c3 (t)jb; 0; P (1)0 ; P
(2)
0 i+

C
a;0;P

(1)
0 ;P

(2)
�2

a1;a2;a3;c3 (t)ja; 0; P (1)0 ; P
(2)
�2 i+ C

b;0;P
(1)
0 ;P

(2)
�2

a1;a2;a3;c3 (t)jb; 0; P (1)0 ; P
(2)
�2 i+

C
a;0;P

(1)
�2 ;P

(2)
0

a1;a2;a3;c3 (t)ja; 0; P (1)�2 ; P
(2)
0 i+ Cb;0;P

(1)
�2 ;P

(2)
0

a1;a2;a3;c3 (t)jb; 0; P (1)�2 ; P
(2)
0 i+

C
a;0;P

(1)
�2 ;P

(2)
�2

a1;a2;a3;c3 (t)ja; 0; P (1)�2 ; P
(2)
�2 i+ C

b;0;P
(1)
�2 ;P

(2)
�2

a1;a2;a3;c3 (t)jb; 0; P (1)�2 ; P
(2)
�2 i+

C
b;1;P

(1)
0 ;P

(2)
0

a1;a2;a3;c3 (t)jb; 1; P (1)0 ; P
(2)
0 i+ Cb;1;P

(1)
0 ;P

(2)
�2

a1;a2;a3;c3 (t)jb; 1; P (1)0 ; P
(2)
�2 i+

C
b;1;P

(1)
�2 ;P

(2)
0

a1;a2;a3;c3 (t)jb; 1; P (1)�2 ; P
(2)
0 i+ Cb;1;P

(1)
�2 ;P

(2)
�2

a1;a2;a3;c3 (t)jb; 1; P (1)�2 ; P
(2)
�2 i
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becomes

j	c3a1;a2;a3(t)i =�
C
a;0;P

(1)
0 ;P

(2)
0

a1;a2;a3;c3 (0) cos(g3t)� iC
b;1;P

(1)
0 ;P

(2)
0

a1;a2;a3;c3 (0) sin(g3t)

�
ja; 0; P (1)0 ; P

(2)
0 i+

C
b;0;P

(1)
0 ;P

(2)
0

a1;a2;a3;c3 (0)jb; 0; P (1)0 ; P
(2)
0 i+ Cb;0;P

(1)
0 ;P

(2)
�2

a1;a2;a3;c3 (0)jb; 0; P (1)0 ; P
(2)
�2 i+�

C
a;0;P

(1)
0 ;P

(2)
�2

a1;a2;a3;c3 (0) cos(g3t)� iC
b;1;P

(1)
0 ;P

(2)
�2

a1;a2;a3;c3 (0) sin(g3t)

�
ja; 0; P (1)0 ; P

(2)
�2 i+�

C
a;0;P

(1)
�2 ;P

(2)
0

a1;a2;a3;c3 (0) cos(g3t)� iC
b;1;P

(1)
�2 ;P

(2)
0

a1;a2;a3;c3 (0) sin(g3t)

�
ja; 0; P (1)�2 ; P

(2)
0 i+

C
b;0;P

(1)
�2 ;P

(2)
0

a1;a2;a3;c3 (0)jb; 0; P (1)�2 ; P
(2)
0 i+ Cb;0;P

(1)
�2 ;P

(2)
�2

a1;a2;a3;c3 (0)jb; 0; P (1)�2 ; P
(2)
�2 i+�

C
a;0;P

(1)
�2 ;P

(2)
�2

a1;a2;a3;c3 (0) cos(g3t)� iC
b;1;P

(1)
�2 ;P

(2)
�2

a1;a2;a3;c3 (0) sin(g3t)

�
ja; 0; P (1)�2 ; P

(2)
�2 i+�

C
b;1;P

(1)
0 ;P

(2)
0

a1;a2;a3;c3 (0) cos(g3t)� C
a;0;P

(1)
0 ;P

(2)
0

a1;a2;a3;c3 (0) sin(g3t)

�
jb; 1; P (1)0 ; P

(2)
0 i+�

C
b;1;P

(1)
0 ;P

(2)
�2

a1;a2;a3;c3 (0) cos(g3t)� C
a;0;P

(1)
0 ;P

(2)
�2

a1;a2;a3;c3 (0) sin(g3t)

�
jb; 1; P (1)0 ; P

(2)
�2 i+�

C
b;1;P

(1)
�2 ;P

(2)
0

a1;a2;a3;c3 (0) cos(g3t)� C
a;0;P

(1)
�2 ;P

(2)
0

a1;a2;a3;c3 (0) sin(g3t)

�
jb; 1; P (1)�2 ; P

(2)
0 i+�

C
b;1;P

(1)
�2 ;P

(2)
�2

a1;a2;a3;c3 (0) cos(g3t)� C
a;0;P

(1)
�2 ;P

(2)
�2

a1;a2;a3;c3 (0) sin(g3t)

�
jb; 1; P (1)�2 ; P

(2)
�2 i

Initially, the atom is in its ground state. Then, Ca;0;P
(1)
0 ;P

(2)
0

a1;a2;a3;c3 (0) = C
a;0;P

(1)
0 ;P

(2)
�2

a1;a2;a3;c3 (0) =

C
a;0;P

(1)
�2 ;P

(2)
0

a1;a2;a3;c3 (0) = C
a;0;P

(1)
�2 ;P

(2)
�2

a1;a2;a3;c3 (0) = 0.
Plugging these values in the state vector

j	c3a1;a2;a3(t)i =
1

2
p
2
j0; bi 


h
�ijP (1)0 ; P

(2)
0 i � jP (1)0 ; P

(2)
�2 i � jP

(1)
�2 ; P

(2)
0 i � ijP (1)�2 ; P

(2)
�2 i

i
+

1
2
p
2
j0; ai 


h
jP (1)0 ; P

(2)
0 i � ijP (1)0 ; P

(2)
�2 i � ijP

(1)
�2 ; P

(2)
0 i+ jP (1)�2 ; P

(2)
�2 i

i
Atom 3 is passed through a Ramsey �eld. This changes the state to

j	c3a1;a2;a3(t)i =
1

2
p
2

j0;bi+j0;aip
2



h
�ijP (1)0 ; P

(2)
0 i � jP (1)0 ; P

(2)
�2 i � jP

(1)
�2 ; P

(2)
0 i � ijP (1)�2 ; P

(2)
�2 i

i
+

1
2
p
2

j0;bi�j0;aip
2



h
jP (1)0 ; P

(2)
0 i � ijP (1)0 ; P

(2)
�2 i � ijP

(1)
�2 ; P

(2)
0 i+ jP (1)�2 ; P

(2)
�2 i

i
Then, applying P = jbihbj on j	c3a1;a2;a3(t)i and renormalising, we get

j	a1;a2;a3(t)i =
 
jP (1)0 i � ijP (1)�2 ip

2

! 
ijP (2)0 i � jP (2)�2 ip

2

!
Atom 3 is now �disentangled�with atom 1 and 2. This is analogous to j	out(t)i =�
(�1)f(0)j0i+(�1)f(1)j1ip

2

��
j0i�j1ip

2

�
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6.2.2 Case II

This is the same as case I, with only a change in signs. Thus we can use our previ-

ous calculations. From
�
j0i�j1ip

2

�


�
jP0i+ijP�2ip

2

�
= 1

2 (j0P0i � j1P0i � ij1P�2i+ ij0P�2i)

we get our initial conditions for the same state. After applying g21
4�1

t = �=2, we
get

j	c3a1(t)i =
1

2
j1; P0i �

i

2
j1; P�2i+

1

2
j0; P0i+

i

2
j0; P�2i

This is atom 1 leaving cavity 3. Atom 2 now enters cavity 3. Using initial condi-

tions from 1
2

�
j1; P (1)0 i � ij1; P (1)�2 i+ j0; P

(1)
0 i+ ij0; P (1)�2 i

�


�
ijP (2)

0 i�jP (2)
�2 ip

2

�
and

choosing the interaction time
�
g22=4�2

�
t = �=2, we get

j	c3a1;a2(t)i =
1

2
p
2

"
�ij1; P (1)0 ; P

(2)
0 i � j1; P (1)�2 ; P

(2)
0 i � j1; P (1)0 ; P

(2)
�2 i � j0; P

(1)
�2 ; P

(2)
0 i+

ij1; P (1)�2 ; P
(2)
�2 i � j0; P

(1)
0 ; P

(2)
�2 i+ ij0; P

(1)
0 ; P

(2)
0 i � ij0; P (1)�2 ; P

(2)
�2 i

#

When atom 3 interacts resonantly with cavity 3, we switch the cavity o¤. Atom
3 is now sent to the Ramsey �eld which gives us the state

j	a1;a2;a3(t)i =
1

2
p
2
jai 


h
jP (1)�2 ; P

(2)
�2 i+ jP

(1)
0 ; P

(2)
0 i � ijP (1)0 ; P

(2)
�2 i+ ijP

(1)
�2 ; P

(2)
0 i

i
+

1
2
p
2
jbi 


h
�ijP (1)0 ; P

(2)
0 i+ 1jP (1)0 ; P

(2)
�2 i � 1jP

(1)
�2 ; P

(2)
0 i � ijP (1)�2 ; P

(2)
�2 i

i
Passing atom 3 through a Ramsey �eld,

j	a1;a2;a3(t)i =
1

2
p
2

jbi�jaip
2


h
jP (1)�2 ; P

(2)
�2 i+ jP

(1)
0 ; P

(2)
0 i � ijP (1)0 ; P

(2)
�2 i+ ijP

(1)
�2 ; P

(2)
0 i

i
+

1
2
p
2

jbi+jaip
2


h
�ijP (1)0 ; P

(2)
0 i+ 1jP (1)0 ; P

(2)
�2 i � 1jP

(1)
�2 ; P

(2)
0 i � ijP (1)�2 ; P

(2)
�2 i

i
After applying P = jbihbj, we get the following state which is independent of
atom 3

j	a1;a2(t)i = �
 
jP (1)0 i � ijP (1)�2 ip

2

! 
ijP (2)0 i � jP (2)�2 ip

2

!

6.2.3 Case III

If, however, the cavity was initially in the Fock state j1i, we can start with a
momentum state of

j	c3a1(t)i = e�i
P201
2M1

t=~
1X

l=�1

h
Ca;n�1Pl;a1;c2

(t)ja; 0; Pli+ Cb;nPl;a1;c2(t)jb; 1; Pli
i

This is the same equation as Eq. (3) for n = 1. Thus, solutions in the adiabatic
approximation are
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j	c3a1(t)i =
�
Cb;1P0;a1;c3(0) cos

�
g21
4�1

t

�
+ iCb;1P�2;a1;c3(0) sin

�
g21
4�1

t

��
jb; 1; P0i+�

Cb;1P�2;a1;c3(0) cos

�
g21
4�1

t

�
+ iCb;1P0;a1;c3(0) sin

�
g21
4�1

t

��
jb; 1; P�2i

From j1i 

�
jP0i+ijP�2ip

2

�
, we have Cb;1P0;a1;c3(0) = �iCb;1P�2;a1;c3(0) =

1p
2
and

g21
4�1

t = �=2

j	a1(t)i =
�jP0i+ ijP�2ip

2

The cavity is not entangled with the atom. Repeating the step for atom 2 and

using the probabilities from j1i 

�
ijP0i�jP�2ip

2

�
and g21

4�1
t = �=2; we get

j	c3a2(t)i = �
ip
2
jP0i �

1p
2
jP�2i

Again, the cavity is not entangled with atom 2. Atom 3 is now passed resonantly
in cavity 3. We consider the same same initial state

j	c3a3(t)i = Ca;0a3;c3(t)ja; 0i+ C
b;1
a3;c3(t)jb; 1i

with a Hamiltonian
H =~g3

�
�+â+ ��â

y�
From the probability amplitude method,

i _Ca;0a3;c3(t)ja; 0i+ i _C
b;1
a3;c3(t)jb; 1i

= g3C
b;1
a3;c3(t)ja; 0i+ g3C

a;0
a3;c3(t)jb; 1i

)
i _Ca;0a3;c3(t) = g3C

b;1
a3;c3(t) (32)

and
i _Cb;1a3;c3(t) = g3C

a;0
a3;c3(t) (33)

Taking the Laplace transform of both the equations, we get

isF a;0a3;c3(s)� iC
a;0
a3;c3(0) = g3F

b;1
a3;c3(s)

and
isF b;1a3;c3(s)� iC

b;1
a3;c3(0) = g3F

a;0
a3;c3(s)

Arranging the Laplace Transform of the �rst equation, i.e. Eq (32), we get

F a;0a3;c3(s) =
g3F

b;1
a3;c3(s) + iC

a;0
a3;c3(0)

is
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which can be put in the 2nd equation to get

isF b;1a3;c3(s)� iC
b;1
a3;c3(0) = g3

g3F
b;1
a3;c3(s) + iC

a;0
a3;c3(0)

is

isF b;1a3;c3(s) = iCb;1a3;c3(0) +
g23F

b;1
a3;c3(s) + ig3C

a;0
a3;c3(0)

is

isF b;1a3;c3(s) = iCb;1a3;c3(0)� i
g23F

b;1
a3;c3(s) + ig3C

a;0
a3;c3(0)

s

is2F b;1a3;c3(s) = isCb;1a3;c3(0)� ig
2
3F

b;1
a3;c3(s)� g3C

a;0
a3;c3(0)

s2F b;1a3;c3(s) = sCb;1a3;c3(0)� g
2
3F

b;1
a3;c3(s) + ig3C

a;0
a3;c3(0)�

s+ g23
�
F b;1a3;c3(s) = sCb;1a3;c3(0) + ig3C

a;0
a3;c3(0)

F b;1a3;c3(s) =
s

s2 + g23
Cb;1a3;c3(0) + i

g3
s2 + g23

Ca;0a3;c3(0)

L [e�atSin(bt)] = b
(s+a)2+b2

and L [e�atCos(bt)] = s+a
(s+a)2+b2

Cb;1a3;c3(t) = Cb;1a3;c3(0) cos (g3t) + iC
a;0
a3;c3(0) sin(g3t)

From Eq. (33)
i _Cb;1a3;c3(t) = g3C

a;0
a3;c3(t)

Ca;0a3;c3(t) = �C
a;0
a3;c3(0) cos(g3t)� iC

b;1
a3;c3(0) sin (g3t)

From jbi 
 j1i, we have Cb;1a3;c3(0) = 1 and Ca;0a3;c3(t) = 0 and g3t = �=2 which
changes the state j	c3a3(t)i to

j	c3a3(t)i = �ija; 0i

The cavity switches o¤ but the atom goes in the excited state. After passing

it through a Ramsey �eld, j	c3a3(t)i = �i
�
jbi�jaip

2

�
j0i: If P = jbihbj is applied

after the interaction, atom 3 will go back to its state. This means that we end
up with

j	a1;a2(t)i = �
 
jP (1)0 i+ ijP (1)�2 ip

2

! 
ijP (2)0 i � ijP (2)�2 ip

2

!

6.2.4 Case IV

In the last case, we can consider the cavity initially in the state j0i. The

state e�i
P201
2M1

t=~ 1P
l=�1

Cb;nPl;a1;c2(t)jb; 0; Pli on which Hamiltonian H =
P 2
x1

2M1
+

~�1

2 �z + ~g1Cos (kx1)
�
�+â+ ��â

y� acts will produce the same equations for
n = 0. Any n = �1 term will be automatically identically equal to 0 be-
cause there is no energy beyond the vacuum energy. Using the probability
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amplitude method, we get _Cb;0Pl;a1;c1(t) =

�
l(l+l0)~k2x1

2M1
� �1

2

�
Cb;0Pl;a1;c1(t).and

Cb;0Pl+1;a1;c2(t) = Cb;0Pl�1;a1;c2(t) = 0 (there is no change in momentum of the

atom if there is no photon in the cavity). For l = 0 and l = �2, Cb;0P0;a2;c2(t) =
Cb;0P0;a2;c2(0) = 1 and C

b;0
P�2;a2;c2

(t) = Cb;0P�2;a2;c2(0) = 0. Similarly C
b;0
P�2;a3;c2

(t) =

1 whereas Cb;0P0;a2;c2(t) = 0 for atom 2. When atom 3 is sent to interact reso-
nantly in this cavity, we have, for j	c3a3(t)i = Cb;0a3;c3(t)jb; 0i andH =~g3

�
�+â+ ��â

y�,
_Cb;0a3;c3(t) = 0) Cb;0a3;c3(t) = 1. This reduces the vector j	

c3
a3(t)i to jb; 0i. Apply-

ing P = jbihbj will not change atom 3. Hence there is absolutely no change for
in Uf if the cavity initially has a Fock state of j0i. The atom will experience

no change in momentum and j	a1;a2(t)i =
�
jP (1)
0 i+ijP (1)

�2 ip
2

��
ijP (2)

0 i�jP (2)
�2 ip

2

�
6.3 Step 3

Now, atom 1 is passed through a �nal resonant cavity, cavity 4. The Hamiltonian
works out in the same way on

j	c4a1;a2(t)i = e�i
P201
2M1

t=~
1X

l=�1

h
Ca;n�1Pl;a1;c1

(t)ja; n� 1; Pli+ Cb;nPl;a1;c1(t)jb; n; Pli
i

. The momentum states of atom 2 have not been stated. This is reasonable
because the atoms are not entangled. The resulting rate equations are

i _Ca;n�1Pl;a1;c4
(t) =

�
l(l + l0)~k2x1

M1
+
�1
2

�
Ca;n�1Pl;a1;c1

(t) +

g1
p
n

2

�
Cb;nPl+1;a1;c1(t) + C

b;n
Pl�1;a1;c1

(t)
�

i _Cb;nPl;a1;c4(t) =

�
l(l + l0)~k2x1

2M1
� �1

2

�
Cb;nPl;a1;c1(t) +

g1
p
n

2

�
Ca;n�1Pl�1;a1;c1

(t) + Ca;n�1Pl+1;a1;c1
(t)
�

Then, the solution of the state

j	c4a1;a2(t)i = Cb;nP�2;a1;c4(t)jb; n; P�2i+ C
b;n
P0;a1;c4

(t)jb; n; P0i

with the phase factors ignored, is given by

Cb;nP�2;a1;c4(t) = Cb;nP�2;a1;c4(0) cos

�
g21n

4�1
t

�
+ iCb;nP0;a1;c4(0) sin

�
g21n

4�1
t

�
Cb;nP0;a1;c4(t) = Cb;nP0;a1;c4(0) cos

�
g21n

4�1
t

�
+ iCb;nP�2;a1;c4(0) sin

�
g21n

4�1
t

�
The Hadamard operation is being performed only on the �rst atom. Hence,
only probability amplitudes for atom 1 will be applied
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6.3.1 Case I

If we continue with Case I, then from
jP (1)
0 i�ijP (1)

�2 ip
2

for atom 1

� ip
2
cos

�
g21n

4�1
t

�
jb; n; P�2i+

ip
2
sin

�
g21n

4�1
t

�
jb; n; P�2i+

1p
2
cos

�
g21n

4�1
t

�
jb; n; P0i+

1p
2
sin

�
g21n

4�1
t

�
jb; n; P0i

For g21n
4�1

t = 7�=4; we get

j	a1(t)i = �ijP�2i

6.3.2 Case II

In this case, our initial conditions come from the state that has the form

j	a1;a2(t)i = �
�
jP (1)
0 i�ijP (1)

�2 ip
2

��
ijP (2)

0 i+jP (2)
�2 ip

2

�
. This changes the state j	a1;a2(t)i

to

ip
2
cos

�
g21n

4�1
t

�
jb; n; P�2i �

ip
2
sin

�
g21n

4�1
t

�
jb; n; P�2i+

�1p
2
cos

�
g21n

4�1
t

�
jb; n; P0i �

1p
2
sin

�
g21n

4�1
t

�
jb; n; P0i

For g21n
4�1

t = 7�=4

j	a1(t)i = ijP�2i

6.3.3 Case III

From j	a1;a2(t)i = �
�
jP (1)
0 i+ijP (1)

�2 ip
2

��
ijP (2)

0 i�jP (2)
�2 ip

2

�
we place our initial con-

ditions and get

� ip
2
cos

�
g21n

4�1
t

�
jb; n; P�2i+

ip
2
sin

�
g21n

4�1
t

�
jb; n; P�2i+

�1p
2
cos

�
g21n

4�1
t

�
jb; n; P0i �

1p
2
sin

�
g21n

4�1
t

�
jb; n; P0i

For g21n
4�1

t = 7�=4
j	a1(t)i = �jP0i
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6.3.4 Case IV

From j	a1;a2(t)i =
�
jP (1)
0 i+ijP (1)

�2 ip
2

��
ijP (2)

0 i�jP (2)
�2 ip

2

�
, we have

ip
2
cos

�
g21n

4�1
t

�
jb; n; P�2i �

ip
2
sin

�
g21n

4�1
t

�
jb; n; P�2i+

1p
2
cos

�
g21n

4�1
t

�
jb; n; P0i+

1p
2
sin

�
g21n

4�1
t

�
jb; n; P0i

For g21n
4�1

t = 7�=4

j	a1(t)i = jP0i

6.4 Generalisation

Before the Hadamard is applied to the second atom in step 3, we have the
following states, corresponding to each respective case:-

1.
�
jP (1)
0 i�ijP (1)

�2 ip
2

��
ijP (2)

0 i�jP (2)
�2 ip

2

�

2. �
�
jP (1)
0 i�ijP (1)

�2 ip
2

��
ijP (2)

0 i�jP (2)
�2 ip

2

�

3. �
�
jP (1)
0 i+ijP (1)

�2 ip
2

��
ijP (2)

0 i�jP (2)
�2 ip

2

�

4.
�
jP (1)
0 i+ijP (1)

�2 ip
2

��
ijP (2)

0 i�jP (2)
�2 ip

2

�

For the �rst atom, case I corresponds to
�
(1�f(0)�f(1))jP (1)

0 i+(f(1)�f(0))jP (1)
�2 ip

2

�
for f(0) = 0 and f(1) = 1 i.e. for a balance f . The unit imaginary is a global
resulting phase, which can be ignored for measurement purposes. If f(0) = 1
and f(1) = 0, then this corresponds to the second case. On the other hand,
if f(0) = f(1) = 1, then we have our third case. If the function is balanced
otherwise, then we have our fourth case. If m such atoms are passed in cavity
1 and cavity 3 has a generalised corresponding GHZ state initially, we get our
Deutsch-Jozsa algorithm generalised.
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7 Conclusion

The theory of quantum mechanics, developed as a limiting case to classical me-
chanics, notwithstanding its interpretive di¢ culties, has with it the elegance
for paving way to a variety of applications. One such application is the imple-
mentation of a working Quantum Computer. The push one receives for using
quantum principles as a measure of information and execution of algorithms
is from quantum parallelism. It seems as though nature hides its enormous
calculations. One such realisation of the power of Quantum Parallelism can
be seen with quantum optics when one considers engineering a Quantum Com-
puter, choosing techniques of cavity QED amongst many other competitors. The
Deutsch-Josza algorithm, although of little practical signi�cance, is an encour-
aging example which greatly reduces the time required for a speci�c function to
be determined completely, when compared with its classical counterpart. The
Hadamard gate has been physically realised, and so has the other unitary trans-
formations in the Deutsch-Jozsa algorithm using di¤erent times of interactions
in the cavity. Also, a generalisation of the Deutsch-Jozsa algorithm has been
discussed, which might pave way for a working model of a Quantum Computer.
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8 Appendix

8.1 Mathematical Spaces

Technically, a space is any set together with a well-de�ned structure on it.

De�nition 2 A vector space V over F endowed with the operation h:; :i : V �
V �! F, called the inner product, is called an inner product space or pre-
Hilbert space if 8x;y; z 2 V and � 2 F it satis�es the following axioms[101]:-

� hx+ y; zi = hx; zi+ hy; zi

� h�x;yi = �hx;yi

� hx;yi = hy;xi

� hx;xi � 0

� hx;xi = 0, x = 0

An inner product space V is compactly written as (V ,h:; :i)[101]. This no-
tation may be confused with that for an ordered pair. However, one need not
frustrate oneself over the matter since the use will be clear from context.

Example 3 For x;y 2 Fn, hx;yi = h(x1; x2; :::; xn); (y1; y2; :::; yn)i =
nP
i=1

�xiyi

satis�es the above conditions and hence is an inner product space.[101]

Proposition 4 Let (X,h:; :i) be an inner product space. Then, for v1;v2;v3 2
X over F and �; � 2 F, the following properties hold[101]:-

� h�v1 + �v2;v3i = �hv1;v3i+ �hv2;v3i

� hv1; �v2i = ��hv1;v2i

� hv1; �v2 + �v3i = ��hv1;v2i+ ��hv1;v3i

Proof. For i)
h�v1 + �v2;v3i = h�v1;v3i+ h�v2;v3i = �hv1;v3i+ �hv2;v3i
For ii), we have
hv1; �v2i = h�v2;v1i = �hv2;v1i = ��hv2;v1i = ��hv1;v2i
and �nally for iii) we have
hv1; �v2 + �v3i = h�v2 + �v3;v1i = �hv2;v1i + �hv3;v1i = ��hv2;v1i +

��hv3;v1i = ��hv1;v2i+ ��hv1;v3i

Lemma 5 Let I be an inner product with a corresponding norm. For x;y 2 I,
the space satis�es the Cauchy-Schwartz inequality jhx;yij2 � hx;xihy;yi[101]
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Proof. For y = 0; hx;0i = hx;x� xi = hx;xi � hx;xi = 0
Let � 2 F. For y 6= 0; hx� �y;x��yi � 0
) hx;x� �yi � �hy;x� �yi � 0
) hx;xi � ��hx;yi � � [hy;xi � ��hy;yi] � 0
For �� = hy;xi

hy;yi , we have

hx;xi � ��hx;yi � � [hy;xi � hy;xi] = hx;xi � hy;xi
hy;yi hx;yi � 0

) hx;xi � hx;yi
hy;yi hx;yi = hx;xi �

jhx;yij2
hy;yi � 0

) hx;xi � jhx;yij2
hy;yi

) hx;xihy;yi � jhx;yij2

) jhx;yij2 � hx;xihy;yi
If x = �y, then
hx� �y;x� �yi = h�y � �y; �y � �yi = h0;0i = 0
or hx� �y;x� �yi = 0
) hx;x� �yi � �hy;x� �yi = 0
) hx;xi � ��hx;yi � � [hy;xi � ��hy;xi] = 0
Again, for �� = hy;xi

hy;yi , we have

hx;xi � hy;xi
hy;yi hx;yi = 0

) hx;xi � hx;yi
hy;yi hx;yi = hx;xi �

jhx;yij2
hy;yi = 0

) hx;xi = jhx;yij2
hy;yi

) jhx;yij2 = hx;xihy;yi
i.e. equality will hold if the vectors are multiples of each other.

De�nition 6 Two elements x;y of an inner product space are orthogonal if
hx;yi = 0.[101]

This is written as x ? y. If, furthermore, the norm of the two elements is
1, then the two are said to be orthonormal to each other. Two inner product
spaces A and B are orthogonal if 8x 2 A and 8y 2 B, x ? y: This is written
as A ? B.

Theorem 7 An orthonormal set is linearly independent[101]

Proof. Let fe1; e2; :::; eng be orthonormal. Consider �1e1+�2e2+:::+�nen = 0

Then, for any j 2 f1; 2; :::; ng;
�

nP
i=1

�iei; ej

�
= 0

)
nP
i=1

�i hei; eji = 0

) �j hej ; eji = 0
) �j = 0
Since j is arbitrary, therefore �1e1 + �2e2 + :::+ �nen = 0
) �1 = �2 = ::: = �n = 0

De�nition 8 Any space X with a norm de�ned on it is called complete if
every Cauchy sequence in X converges in X[101]
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De�nition 9 A complete inner product space is known as aHilbert Space.[101]

Example 10 For 1 � p � 1; LP (
) = ff : f is measurable on 
 and kfkP <

1gwhere for 1 � p <1 , kfkP =
�R



kfkP dx

�1=P
and kfk1 = Sup

x

jf(x)j
kxk

Lp spaces, sometimes called Lebesgue spaces, are de�ned using natural gener-
alisations of p-norms for �nite-dimensional vector spaces. They are named after
the French mathematician Henri Lebesgue (June 28, 1875 �July 26, 1941). It is
from these spaces that Quantum Mechanics adopts its mechinary. L2(�1;1)
is a particular example of a space of square-integrable function. It is important
from an application point of view. Hilbert spaces are named after the German
mathematician David Hilbert

De�nition 11 Let H be a Hilbert space and B � H. B is an orthonormal
system of H if kxk = 1 8x 2 B and x ? y 8x;y 2 B[101].

This de�nition is employed when the orthonormal basis (axis) of any space
need to be clari�ed. In this case and in the next few, notice that even the basis
have been generalised

De�nition 12 Let H1 and H2 be two Hilbert spaces of dimension n and k re-
spectively. Given two vectors (x1; x2; :::; xn) 2 H1 and (y1; y2; :::; y3) 2 H2. The
tensor product 
 of x and y, written compactly as x
y, or even xy is de�ned as
x
 y := (x1y1; x1y2; :::; x1yk; x2y1; x2y2; :::; x2yk; :::; xny1; xny2; :::; xnyk)[101].

One can even take the tensor product of two spaces altogether to form a
"bigger" space by taking the tensor of each element of the former space with
each element of the latter space i.e. H1 
 H2 = fx 
 y; x 2 H1; y 2 H2g:
This construction accounts for a system of particles..If, however, one wishes to
break a Hilbert space into its constituent orthogonal spaces, then one considers
the direct sum of two spaces. If �nitely many Hilbert spaces H1;H2; :::;Hn are
given, one can construct their direct sum. Formally, this is done as follows.
Let H1 and H2 be two Hilbert spaces over a Field F. The Cartesian product
H1 �H2 can be given a space structure by using the direct sum H1 �H2 and
then turn this into a Hilbert space by de�ning the inner product as

h(x1; x2; :::; xn) ; (y1; y2; :::; yn)i = hx1; y1i+ hx2; y2i+ :::+ hxn; yni

and
� (x;y) = (�x;�y)

Proposition 13 Let H1;H2;H3 be Hilbert spaces of dimension n, k and m
respectively, over a �eld F. For � 2 F, y;y0 2 H1, x;x0 2 H2 and w 2 H3

� (x
 y)
w = x
 (y 
w)

� �(x
 y) = (�x)
 y = x
 (�y)
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� (x+ x0)
 y = (x
 y)+ (x0 
 y)

� x
 (y + y0) = (x
 y) + (x
 y0)

Proof. (x
 y)
w
= (x1y1; x1y2; :::; x1yk; x2y1; x2y2; :::; x2yk; :::; xny1; xny2; :::; xnyk)
(w1; w2; :::; wm)
= x
 (y 
w)
Next, �(x
 y)
= �(x1y1; x1y2; :::; x1yk; x2y1; x2y2; :::; x2yk; :::; xny1; xny2; :::; xnyk)
= (�x1y1; �x1y2; :::; �x1yk; �x2y1; �x2y2; :::; �x2yk; :::; �xny1; �xny2; :::; �xnyk)
Then, ((�x1) y1; :::; (�x1) yk; (�x2) y1; :::; (�x2) yk; :::;

�
�x(n)

�
y1; :::;

�
�x(n)

�
yk))

(�x)
 y
and (x1 (�y1) ; :::; x1 (�yk) ; x2 (�y1) ; :::; x2 (�yk) ; :::; xn (�y1) ; :::; xn (�yk)))

x
 (�y)
For the third proposition, (x+ x0)
 y
= (x1y1 + x

0
1y1; :::; x1yk + x

0
1yk; :::; xnyk + x

0
nyk)

= (x1y1; :::; x1yk; :::; xnyk) + (x
0
1y1; :::; x

0
1yk; :::; x

0
nyk)

= (x
 y) + (x0
y)
The fourth proposition follows in a similar manner.
H1
H2 is a Hilbert space. Firstly, the set of the tensor product of elements

from two di¤erent �elds yields a �eld itself. Secondly, one can construct a vector
space from two others since every vector space is free and �nally, one can de�ne
the inner product h:; :iH1
H2 : H1
H2 �! F1
F2 by hv1
v2;u1
u2iH1
H2 =
hv1;u1ihv2;u2i for v1;u1 2 H1 and v2;u2 2 H2. Completeness can be shown
by using the same inner product. If H1 and H2 have orthonormal bases feng
and fe0kg, respectively, then fen 
 e0kg is an orthonormal basis for H1 
 H2.
Furthermore, the dimension of H1
H2 is the product (as cardinal numbers) of
the Hilbert dimensions i.e. the dimension of such a space is n� k.
Proof. Let e1; e2; :::; en and e01; e

0
2; :::; e

0
k be linearly independent basis for H1

and H2 respectively. Then, From the basis (e1; e2; :::; en)
 (e01; e02; :::; e0k) we can
form the sum c1c

0
1e1e

0
1 + c1c

0
2e1e + ::: + c1c

0
ke1e

0
k + c2c

0
1e2e

0
1 + c2c

0
2e2e

0
2 + ::: +

c2c
0
ke
0
2e
0
k + :::+ cnc

0
1ene

0
1 + cnc

0
2ene

0
2 + :::+ cnc

0
ke
0
ne
0
k

If (e1; e2; :::; en)
 (e01; e02; :::; e0k) = 0
then c1e1(c

0
1e
0
1 + c02e

0
2 + ::: + c02e

0
k) + c2e2(c

0
1e
0
1 + c02e

0
2 + ::: + c02e

0
k) + ::: +

cnen(c
0
1e
0
1 + c

0
2e
0
2 + :::+ c

0
2e
0
k) = 0

) (c1e1 + c2e2 + :::+ cnen) (c
0
1e
0
1 + c

0
2e
0
2 + :::+ c

0
2e
0
k) = 0

) (c1e1 + c2e2 + :::+ cnen) = 0 or (c01e
0
1 + c

0
2e
0
2 + :::+ c

0
2e
0
k) = 0

) c1; c2; :::; cn = 0 or c01; c
0
2; :::; c

0
n = 0

) c1c
0
1; c1c

0
2; :::; c1c

0
k; :::; cnc

0
k = 0

) (e1; e2; :::; en)
 (e01; e02; :::; e0k) is linearly independent
This completes the proof.
A dual space of any Hilbert space H is a collection of all functionals on H.

The Hermitian of any vector is seen by applying the Hermitian operator on the
vector with the property that hT (x);yi = hx; T*(y)i = hT*(x);yi = hx; T (y)i :
The Hermitian conjugate of any vector in a Hilbert space H is an element of
the dual space of H
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8.2 Operators on a Hilbert Space

De�nition 14 An operator is a mapping from one space to another.

For any operator A, B de�ned from a vector space U to vector space V over
F, operator addition and multiplication of operators is de�ned in the following
way[101]

� 8x 2 U , (A+B)(x) = A(x) +B(x) 2 V

� 8� 2 F, (�A)x = � (Ax) 2 V

The addition of operators is commutative. However, the products of op-
erators is not always commutative. The product is, however, associative. A
functional, on the other hand, is a mapping from a vector space to a �eld.
Many properties of functionals are analogous to those of operators[101].
The linear operator merits special attention:�

De�nition 15 Let H1, H2 be two Hilbert spaces over F. T : H1 �! H2 is
linear if, 8x;y 2 H1 and 8� 2 F, T (�x) = �T (x) and T (x + y) = T (x) +
T (y)[101]

Example 16 An operator T from C[a; b] into itself de�ned by

T (x(t)) = tx(t)

Of special importance is the fact that for any operator T and 0 vector,
T (0) = 0
Proof. T (0) = T (x� x)
= T (x+ (� 1x)) = T (x) +T(� 1x) =T (x)�T(x)
= 0

Example 17 Another operator T from C[a; b] into itself can be de�ned by

T (x(t)) =
tR
a

x(�)d� is linear.

De�nition 18 Let H1;H2 be Hilbert spaces and T : H1 �! H2 be a linear
operator. Then, the Hilbert adjoint operator T*: H2 �! H1 of T is such that,
8x 2 H1 and y 2H2

hT (x);yi = hx; T*(y)i

Theorem 19 The Hilbert adjoint operator T* of T is unique

Proof. Let T*1 : H2 �! H1 and T*2 : H2 �! H1 be Hilbert adjoints of
T : H1 �! H2

Then, 8x 2 H1 and y 2H2

hT (x);yi = hx; T*1(y)i = hx; T*2(y)i
) T*1(y) = T*2(y) 8y 2H2

) T*1 = T*2
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De�nition 20 A bounded linear operator T : H �! H on a Hilbert space H is
said to be

� self-adjoint or Hermitian if T*= T

� unitary if T is bijective and T*= T�1

Thus, if T is self-adjoint, then hT (x);yi = hx; T (y)i[101]

Example 21 The usual dot product h:; :i : Cn �! C is de�ned as hx;yi = xTy
where x,y are column vectors.

De�nition 22 Let T be an operator and x be an element of a Hilbert space.
If there is a scalar � such that T (x) = �x, then � is called the eigenvalue T
corresponding to that eigenvector

Theorem 23 The eigenvalues of every Hermitian operator are real

Proof. Let H be a Hilbert space over F and T (x) = �x for � 2 F and x 2H
Then, hT (x);yi = hT*(x);yi
) h�x;yi = h��x;yi
) � hx;yi = �� hx;yi
) � = �� if hx;yi 6= 0

De�nition 24 Let H be a Hilbert space and U � H. An operator P̂ : H �! U
is called the projection operator if P̂ y = P̂ and P̂ 2 = P̂ :

The product of two commuting projection operators is also a projection
operator.
Proof. Let P̂1 and P̂2 be two projection operators. Then,�

P̂1P̂2

�y
= P̂ y2 P̂

y
1

= P̂2P̂1 = P̂1P̂2

And
�
P̂1P̂2

�2
= P̂1P̂2P̂1P̂2

= P̂1P̂1P̂2P̂2 = P̂ 21 P̂
2
2 = P̂1P̂2

The sum of two projection operators is not necessarily a projection operator
itself. Two projection operators are orthogonal if their product is zero. Thus,
P̂jP̂i = �ijP̂i where

�ij =
1 i = j
0 i 6= j

is the Kronecker-Delta �function�. The sum of two projection operators is a
projection operator if and only if the projection operators are mutually orthog-
onal

Proof.
�
P̂1 + P̂2

�y
= P̂ y1 + P̂

y
2 = P̂1 + P̂2

And
�
P̂1 + P̂2

�2
=
�
P̂1 + P̂2

��
P̂1 + P̂2

�
= P̂ 21 + P̂1P̂2 + P̂2P̂1 + P̂

2
2

= P̂1 + P̂2
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8.3 Laplace Transform

De�nition 25 Let f(t) be a function. The Laplace transform of f , denoted

by L[f(t)]; is de�ned as
1R
0

e�stf(t)dt

This transformation is linear

Proof. L[�f(t)+�g(t)] =
1R
0

e�st (�f(t) + �g(t)) dt =
1R
0

e�st�f(t)dt+
1R
0

e�st�g(t)dt

= �
1R
0

e�stf(t)dt+ �
1R
0

e�stg(t)dt = �L[f(t)] + �L[g(t)]

By convention the Laplace transformation of a derivative is denoted by
L[f(t)] = F (s). The inverse Laplace transform of a known identity can be
deduced from a table of values. Evaluating a Laplace inverse without any table
is beyond the scope of this thesis.
Here are a few useful properties stated as lemmas directly from the above

de�nition

Lemma 26 L[f 0(t)] = sL[f(t)]� f(0)

Proof. L[f(t)] =
1R
0

e�stf(t)dt

= f(t)e�st

�s

1
]
0
�
1R

0

e�st

�s f
0(t)dt

= f(0)
�s +

1
sL[f

0(t)] for s > 0

i.e. L[f(t)] = f(0)
�s �

1
sL[f

0(t)] for s > 0
or sL[f(t)]� f(0) = L[f 0(t)] for s > 0

Lemma 27 L[e�atf(t)] = F (s+ a)

Proof. L[e�atf(t)] =
1R
0

e�ste�atf(t)dt

=
1R
0

e�(s+a)tf(t)dt

Let s+ a = �. Then,
1R
0

e�(s+a)tf(t)dt =
1R
0

e��tf(t)dt

= F (�) = F (s+ a)

Lemma 28 L [Sin(bt)] = b
s2+b2

Proof. L [Sin(bt)] =
1R
0

e�stSin(bt)dt

=
1R
0

e�st
[eibt�e�ibt]

2i dt = 1
2i

1R
0

e�(s�ib)tdt� 1
2i

1R
0

e�(s+ib)tdt

= 1
2i
e�(s�ib)t

�(s�ib)

1
]
0
� 1

2i
e�(s+ib)t

�(s+ib)

1
]
0
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= 1
2i

h
1

(s�ib) �
1

(s+ib)

i
for s > 0

= b
(s�ib)(s+ib) =

b
s2+b2

From this lemma and the one that follows, one may easily determine Laplace
inverse of algebraic expressions of the forms written in the lemmae.

Lemma 29 L [Cos(bt)] = s
s2+b2

Proof. L [Cos(bt)] =
1R
0

e�stCos(bt)dt

=
1R
0

e�st
[eibt+e�ibt]

2 dt = 1
2

1R
0

e�(s�ib)tdt+ 1
2

1R
0

e�(s+ib)tdt

= 1
2
e�(s�ib)t

�(s�ib)

1
]
0
+ 1

2
e�(s+ib)t

�(s+ib)

1
]
0

= 1
2

h
1

(s�ib) +
1

(s+ib)

i
for s > 0

= 1
2

2s
(s�ib)(s+ib) =

s
s2+b2

Corollary 30 L [e�at Sin(bt)] = b
(s+a)2+b2 and L [e

atCos(bt)] = s+a
(s+a)2+b2

73



8.4 Dirac Formalism

The postulates mentioned in the thesis presuppose a continuous nature of the
problem at hand. This is the Schrodinger formulation. Hiesenberg had his own
formulation of quantum mechanics and this involved various matrices. This
has been developed in to a fascinating Density Operator approach, which can
treat an ensemble of states in a neat manner. Later in time, formulations
involving matrices and waves were shown to be equal[82]. To reconcile with the
two opposing ideas, Paul Andre Maurice Dirac introduced his formulation of
quantum mechanics in 1930[102], involving bras and kets. Of the various ways
to represent a quantum system, the bra-ket notation has been chosen as the
standard notation because of its �exibility. A bra is represented by the symbol
h:j and a ket by j:i which, when combined, represent the inner product h:j:i, to
form an element of the �eld F the Hilbert space scales over. Here, the separation
is represented by a vertical line instead of a comma. Now, a state is a vector j i
in a Hilbert space. The vector may even have parameters to determine its state.
Instead of the usual functional notation, the operator notation takes the form
Ĥj i. If Ĥj i = j�i, then h jĤj i = h j�i. For two states j i and j�i, the
inner product h�j i represents the state of the vector j i after the operation of
h�j: The concept of an eigenvector and eigenvalue carry over. The normalisation
condition is replaced by jh j ij2 = 1: Notice that the calculation of the integral
of a complex-valued function is replaced by an inner product. A ket is a column
vector in a Hilbert Space of its Hermitian conjugate, bra, and vice versa. i.e.
(j� i)y = (�j i)y = ��h j. Each bra has only one corresponding ket and vice
versa.
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8.5 Probability Theory

De�nition 31 Let x be a random variable. Probability density function of
x is a function that describes the probability of that random variable to occur at
a given point.

The probability for a random variable to occur within a given region is given
by the integral of the function between the two points. The probability density
function may take on values greater than one.

De�nition 32 Let x be a random variable which can take on a probability p1
at x2, p2 at x2 and so on. Then, the expectation value of x; written hxi is
de�ned as

X
i

xipi

Analogously, if a random variable x admits a distribution de�ned by a prob-
ability density function f(x), then the expectation value can be calculated by
1Z
�1

xf(x)dx. In quantum mechanics, this is not the most probable value. Like

classical statistics, it only tells one of the mean value that will be obtained when
number of measurements becomes very large. This can be further generalised
to include the expectation values of an operator X̂ on a wave function  (x);D
X̂
E
:=

1Z
�1

X̂ j (x)j2 dx. In the Dirac Notation, this is equivalent to
D
 
���X̂��� E
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8.6 Wave equation in a homogenous medium

De�nition 33 The nabla symbol r on R3 is de�ned as ( @@x ;
@
@y ;

@
@z )

Proposition 34 Let V =(v1; v2; v3) 2 R3, where each coordinate is a function
of x, y, z. Then, r� (r�V) = r (r:V)�r2V

Proof. r� (r�V) = r�
h
( @@x ;

@
@y ;

@
@z )� (v1; v2; v3)

i
= r�

�
@v3
@y �

@v2
@z ;

@v1
@z �

@v3
@x ;

@v2
@x �

@v1
@y

�
=
�
@2v2
@yx +

@2v3
@xz �

@2v1
@y2 �

@2v1
@z2 ;

@2v2
@yz +

@2v1
@xy �

@2v2
@z2 �

@2v2
@x2 ;

@2v1
@xz +

@2v2
@zy �

@2v3
@z2 �

@2v3
@y2

�
=

0B@
@2v2
@yx +

@2v3
@xz +

@2v1
@x2 �

@2v1
@x2 �

@2v1
@y2 �

@2v1
@z2

@2v2
@yz +

@2v1
@xy +

@2v2
@y2 �

@2v2
@x2 �

@2v2
@y2 �

@2v2
@z2

@2v1
@xz +

@2v2
@zy +

@2v3
@x2 �

@2v3
@x2 �

@2v3
@y2 �

@2v3
@z2

1CA
T

=

0B@
@2v2
@yx +

@2v3
@xz +

@2v1
@x2

@2v3
@yz +

@2v1
@xy +

@2v2
@y2

@2v1
@xz +

@2v2
@zy +

@2v3
@z2

1CA
T

�

0B@
@2v1
@x2 +

@2v1
@y2 +

@2v1
@z2

@2v2
@x2 +

@2v2
@y2 +

@2v2
@z2

@2v3
@x2 +

@2v3
@y2 +

@2v3
@z2

1CA
T

The term on the left becomes�
@

@x

�
@v1
@x

+
@v2
@y

+
@v3
@z

�
;
@

@y

�
@v1
@x

+
@v2
@y

+
@v3
@z

�
;
@

@z

�
@v1
@z

+
@v2
@y

+
@v3
@z

��
=
�
@
@x ;

@
@y ;

@
@z

��
@v1
@x +

@v2
@y +

@v3
@z

�
= r (r:(v1; v2; v3))
= r (r:V)
The one on the right becomes��
@2

@x2
+

@2

@y2
+

@2

@z2

�
v1;

�
@2

@x2
+

@2

@y2
+

@2

@z2

�
v2;

�
@2

@x2
+

@2

@y2
+

@2

@z2

�
v3

�
=
�
@2

@x2 +
@2

@y2 +
@2

@z2

�
(v1; v2; v3)

=
h�

@
@x ;

@
@y ;

@
@z

�
:
�
@
@x ;

@
@y ;

@
@z

�i
(v1; v2; v3)

= r2V
This completes the proof
Among the four famous Maxwell�s equations listed in section V, we start

from r � E = �@B
@t for a source free region. Applying the nabla operator on
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both sides, we get

r� (r�E) = �r�@B
@t

= � @

@t
(r�B)

r (r:E)�r2E = ��0
@

@t
(r�H)

0�r2E = ��0
@

@t
(r�H)

r2E = �0
@

@t

�
@D

@t

�
r2E = �0�0

@2E

@t2

r2E = 1

c2
@2E

@t2

On the other hand, starting from r�H = @D
@t , we get

r� (r�H) = r� @D

@t

r (r:H)�r2H =�0
@

@t
(r�E)

�r2H =�0
@

@t

�
�@B
@t

�
r2H =�0�0

@

@t

�
@H

@t

�
r2H =

1

c2
@2H

@t2
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8.7 Commutator Algebra

De�nition 35 Let (F;+; �) be a �eld and Â,B̂ 2 F The commutator of these
two elements is de�ned by

(Â � B̂)� (Â � B̂)
and the anticommutator is de�ned by

(Â � B̂) + (B̂ � Â)

The former is denoted by [Â; B̂] and the latter is denoted by fÂ; B̂g: Two
elements commute if [Â; B̂] = 0 and anti-commute if fÂ; B̂g = 0

Proposition 36 8 Â; B̂,Ĉ 2 F and scalar �

� [Â; Â] = 0 (self-commutativity)

� [Â; B̂] = �[B̂; Â] (antisymmetry)

� [Â; B̂ + Ĉ] = [Â; B̂] + [Â; Ĉ] (linearity)

� [Â; B̂]y = [B̂y; Ây] (Hermition conjugate of a commutator)

� [Â; B̂Ĉ] = [Â; B̂]Ĉ+; B̂[Â; Ĉ] (distributivity)

� [ÂB̂; Ĉ] = Â[B̂; Ĉ]+; [Â; Ĉ]B̂ (distributivity)

� [Â; [B̂; Ĉ]] + [B̂; [Ĉ; Â]] + [Ĉ; [Â; B̂]] = 0 (Jacobi identity)

� [Â; �] = 0 (commutativity with a scalar)

The proof for each follows directly from the above property. An interesting
consequence of these properties are the uncertainty relations, from which stems
Hiesenberg�s uncertainty relation

De�nition 37 Uncertainty in a Hermitian operator Â is de�ned as

4Â = Â�
D
Â
E

. where
D
Â
E
= h jÂj i denotes the expectation value of Â with respect to a

normalised j i

Lemma 38 If Â is Hermitian, then so is 4Â

De�nition 39 The uncertainty 4A of any Hermitian observable Â is de�ned

by 4A =
r�

4Â
�2

Lemma 40 (4A)2 = hÂ2i � hÂi2
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Proof. From the de�nition of 4Â; it follows that�
4Â

�2
=

�
Â�

D
Â
E�2

=
�
Â�

D
Â
E��

Â�
D
Â
E�

= Â2 �
D
Â
E
Â� Â

D
Â
E
+
D
Â
E2

From
D
Â
E
Â, we have h jAj iÂ = Âh jAj i = Â

D
Â
E
Then,

�
4Â

�2
= Â2 �

2Â
D
Â
E
+
D
Â
E2
. Hence��

4Â
�2�

= h j
�
4Â

�2
j i = h j

�
Â2 � 2Â

D
Â
E
+
D
Â
E2�

j i

= h jÂ2j i � 2h jÂ
D
Â
E
j i+ h j

D
Â
E2
j i

= h jÂ2j i � 2h jÂ (h jAj i) j i+ h j
�
h jÂj i

�2
j i

= h jÂ2j i � 2 (h jAj i) h jÂj i+ h jÂj i2h j i
= h jÂ2j i � 2 (h jAj i)2 + h jÂj i2

= h jÂ2j i � h jÂj i2

= hÂ2i � hÂi2

Theorem 41 Let Â; B̂ be any two Hermitian operators. Then, 4A4B �
1
2

���D[Â; B̂]E���
Proof. Let H be a Hilbert space and j i 2 H. If 4Âj i =

�
Â�

D
Â
E�
j i =

j�i and 4B̂j i =
�
B̂ �

D
B̂
E�
j i = j�i, then

h j
�
4Â

�2
j ih j

�
4B̂

�2
j i = h

�
4Â

�2
ih
�
4B̂

�2
i

= h�j�ih�j�i
� jh�j�ij2

=
���h j4Â4B̂j i���2 = ���h4Â4B̂i���2

Also, it can be inferred that
D
4Â4B̂

E
= 1

2

Dh
Â; B̂

iE
+ 1

2

Dn
Â; B̂

oE
or
���D4Â4B̂E���2 = 1

4

���DhÂ; B̂iE���2 + 1
4

���DnÂ; B̂oE���2
)
���D4Â4B̂E���2 � 1

4

���DhÂ; B̂iE���2
Since h

�
4Â

�2
ih
�
4B̂

�2
i �

���h4Â4B̂i���2 and ���D4Â4B̂E���2 � 1
4

���DhÂ; B̂iE���2
we have h4Âih4B̂i � 1

4

���DhÂ; B̂iE���
This is the uncertainty relation
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